Skip to main content
Log in

Structural characterization and visible light activated photocatalytic ability of glass–ceramics prepared from municipal solid waste

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

The relationship between local structure and visible-light-activated photocatalytic ability of glass–ceramics prepared from Municipal Solid Waste (MSW) was investigated. The samples were characterized by XRD, 57Fe Mössbauer spectroscopies, TEM and DRS. From the Mössbauer spectrum, it was found that iron ions are present in FeIII(tetrahedral) and FeII(tetrahedral) coordinations. A high covalent iron magnetic component (FeIV) with small isomeric shifts is also confirmed in the Model Slag (MS-x) samples. The energy band gap values of the samples can easily be tuned by simple adjusting the initial iron concentration and heat treatment. The largest degradation of 99.56% was estimated for methylene blue dye under the visible-light irradiation using MS-15. It is concluded that a small change of chemical composition in MSW contributed to a large change of first-order-rate kinetics and local structure. This study provides a novel approach for the removal of contaminants using MSW and sheds new insights into the presence of FeIV species enhancing photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. OECD Factbook 2015–2016: economic, environmental and social statistics. OECD Publishing, Paris. https://doi.org/10.1787/factbook-2015-en

  2. Ferronato N, Torretta V (2019) Waste mismanagement in developing countries: a review of global issues. Int J Environ Res Public Health 16:1–28. https://doi.org/10.3390/ijerph16061060

    Article  Google Scholar 

  3. Ministry of the Environment (2020) Annual report on the environment. https://www.env.go.jp/recycle/waste_tech/ippan/h30/data/disposal.pdf

  4. Kitatsuji M, Onishi T, Fujii K (1999) Transactions of the Japanese society of irrigation. Drain Reclam Eng 1999:825–830. https://doi.org/10.11408/jsidre1965.1999.825

    Article  Google Scholar 

  5. Li YM, Wu XQ, Wang LJ (2020) Comparative study on utilization of different types of municipal solid waste incineration bottom ash for clinker sintering. J Mater Cycles Waste Manag 22:828–1843. https://doi.org/10.1007/s10163-020-01067-6

    Article  Google Scholar 

  6. Sharma G, Singh K (2019) Recycling and utilization of agro-food waste ashes: syntheses of the glasses for wide-band gap semiconductor applications. J Mater Cycles Waste Manag 21:801–809. https://doi.org/10.1007/s10163-019-00839-z

    Article  Google Scholar 

  7. Visa M, Isac L, Duta A (2015) New fly ash TiO2 composite for the sustainable treatment of wastewater with complex pollutants load. Appl Surf Sci 339:62–68. https://doi.org/10.1016/j.apsusc.2015.02.159

    Article  Google Scholar 

  8. Barjasteh-Moghaddam M, Habibi-Yangjeh A (2012) Preparation of Cd(OH)2 nanostructures in water using a simple refluxing method and their photocatalytic activity. J Iran Chem Soc 9:163–169. https://doi.org/10.1007/s13738-011-0034-7

    Article  Google Scholar 

  9. Gajbhiye BS (2012) Photocatalytic degradation study of methylene blue solutions and its application to dye industry effluent. Int J Mod Eng Res (IJMER) 2:1204–1208

    Google Scholar 

  10. Houas A, Lachheb H, Ksibi M, Elaloui E, Guillard C, Herrmann MJ (2001) Photocatalytic degradation pathway of methylene blue in water. Appl Catal B Environ 31:145–157. https://doi.org/10.1016/S0926-3373(00)00276-9

    Article  Google Scholar 

  11. Akpan GU, Hameed HB (2009) Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater 170:520–529. https://doi.org/10.1016/j.jhazmat.2009.05.039

    Article  Google Scholar 

  12. Abdellah HM, Noiser AS, El-Shazly HA, Mubarak AA (2018) Photocatalytic decolorization of methylene blue using TiO2/UV system enhanced by air sparging. Alex Eng J 57:3727–3735. https://doi.org/10.1016/j.aej.2018.07.018

    Article  Google Scholar 

  13. Sharma KV, Zboril R, Varma SR (2015) Ferrates: greener oxidants with multimodal action in water treatment technologies. Acc Chem Res 48:182–191. https://doi.org/10.1021/ar5004219

    Article  Google Scholar 

  14. Zhang H, Zhu C, Chen Y, Yang M, Yang P, Wu X, Qi L, Meng F (2014) Enhanced photocatalytic activities of net-like hematite nanoparticle/graphene oxide composite. J Mater Chem A 4:1421–1426. https://doi.org/10.1039/C4TA05171H

    Article  Google Scholar 

  15. Tomyn S, Shylin S, Bykov D (2017) Indefinitely stable iron(IV) cage complexes formed in water by air oxidation. Nat Commun 8:14099. https://doi.org/10.1038/ncomms14099

    Article  Google Scholar 

  16. Shylin IS, Pavliuk VM, D’Amario L, Mamedov F, Sabd J, Berggren G, Fritsky OI (2019) Efficient visible light-driven water oxidation catalysed by an ironIV clathrochelate complex. Chem Commun 55:3335–3338. https://doi.org/10.1039/C9CC00229D

    Article  Google Scholar 

  17. Pan L, Shi W, Sen T, Wang L, Zhang J (2021) Visible light-driven selective organic degradation by FeTiO3/persulfate system: the formation and effect of high valent Fe(IV). Appl Catal B Environ 280:119414. https://doi.org/10.1016/j.apcatb.2020.119414

    Article  Google Scholar 

  18. Zhang X, Feng M, Luo C, Nesnas N, Huang C, Sharma KV (2021) Effect of metal ions on oxidation of micropollutants by ferrate(VI): enhancing role of FeIV species. Environ Sci Technol 55:623–633. https://doi.org/10.1021/acs.est.0c04674

    Article  Google Scholar 

  19. Ali AS, Nomura K, Homonnay Z, Kuzmann E, Scrimshire A, Bingham AP, Krehula S, Ristić M, Musić S, Kubuki S (2019) The relationship between local structure and photo-Fenton catalytic ability of glasses and glass-ceramics prepared from Japanese slag. J Radioanal Nucl Chem 322:751–761. https://doi.org/10.1007/s10967-019-06726-z

    Article  Google Scholar 

  20. Ali SA, Khan I, Zhang B, Razum M, Pavić L, Šantić A, Bingham AP, Nomura K, Kubuki S (2021) Structural, electrical and photocatalytic properties of iron-containing soda-lime aluminosilicate glass and glass-ceramics. J Non Cryst Solids 553:120510. https://doi.org/10.1016/j.jnoncrysol.2020.120510

    Article  Google Scholar 

  21. Ishikawa S, Kobzi B, Sunakawa K, Nemeth S, Lengyel A, Kuzmann E, Homonnay Z, Nishida T, Kubuki S (2017) Visible-light activated photocatalytic effect of glass and glass ceramic prepared by recycling waste slag with hematite. Pure Appl Chem 89:535–554. https://doi.org/10.1515/pac-2016-1018

    Article  Google Scholar 

  22. Legrini O, Oliveros E, Braun MA (1993) Photochemical processes for water treatment. Chem Rev 93:671–698. https://doi.org/10.1021/cr00018a003

    Article  Google Scholar 

  23. Puzyn T (2012) Mostrag-Szlichtyng, A. Organic pollutants ten years after the stockholm 536 convention-environmental and analytical update. ISBN: 978-953-307-917-2.

  24. Ali SA, Khan I, Zhang B, Akiyama K, Nomura K, Kuzmann E, Scrimshire A, Bingham AP, Homonnay Z, Sinkó K, Ristić M, Krehula S, Musić S, Kubuki S (2020) Photo-Fenton degradation of methylene blue using hematite-enriched slag under visible light. J Radioanal Nucl Chem 325:537–549. https://doi.org/10.1007/s10967-020-07238-x

    Article  Google Scholar 

  25. Adler PJ (1994) Properties of K2NiF4-type oxides Sr2FeO∼4. Solid State Chem 108:275–283. https://doi.org/10.1006/jssc.1994.1043

    Article  Google Scholar 

  26. Chen CYJ, Dang NL, Liang FH, Bi LW, Gerken BJ, Jin S, Alp EE, Stahl SS (2015) Operando Analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: detection of Fe4+ by Mössbauer spectroscopy. J Am Chem Soc 137:15090–15093. https://doi.org/10.1021/jacs.5b10699

    Article  Google Scholar 

  27. Khan I, Nomura K, Kuzmann E, Homonnay Z, Sinkó K, Ristić M, Krehula S, Musić S, Kubuki, (2020) Photo-Fenton catalytic ability of iron-containing aluminosilicate glass prepared by sol-gel method. J Alloys Comp 816:1–7. https://doi.org/10.1016/j.jallcom.2019.153227

    Article  Google Scholar 

  28. Bødker F, Hansen FM, Koch BC, Lefmann K, Mørup S (2000) Magnetic properties of hematite nanoparticles. Phys Rev B 61:10. https://doi.org/10.1103/PhysRevB.61.6826

    Article  Google Scholar 

  29. Nikolic NV, Spasojevic V, Panjan M, Kopanja L, Mrakovic A, Tadic M (2017) Re-formation of metastable epsilon-Fe2O3 in post-annealing of Fe2O3/SiO2 nanostructure: Synthesis, computational particle shape analysis in micrographs and magnetic properties. Ceram Int 10:7497–7507. https://doi.org/10.1016/j.ceramint.2017.03.030

    Article  Google Scholar 

  30. Davis AE, Mott FN (1970) Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Phil Mag 22:0903–0922. https://doi.org/10.1080/14786437008221061

    Article  Google Scholar 

  31. Nam YH, Um HD, Park KT (2012) Multi-layer coating of SiO2 nanoparticles to enhance light absorption by Si solar cells. J Korean Phys Soc 60:1944–1948. https://doi.org/10.3938/jkps.60.1944

    Article  Google Scholar 

  32. Akgul AF, Akgul G, Yildirim N, Emrah Unalan E, Tura R (2014) Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films. Mater Chem Phys 147:987–995. https://doi.org/10.1016/j.matchemphys.2014.06.047

    Article  Google Scholar 

  33. Melton JD, Bielski BH (1990) Studies of the kinetics, spectral and chemical properties of Fe(IV) pyrophosphate by pulse radiolysis. Int. J Radiat Appl Instrum C Radiat Phys Chem 36:725–733. https://doi.org/10.1016/1359-0197(90)90169-I

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Tokyo Metropolitan Government Advanced Research Grant Number H29-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irfan Khan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, I., Saito, H., Ali, A.S. et al. Structural characterization and visible light activated photocatalytic ability of glass–ceramics prepared from municipal solid waste. J Mater Cycles Waste Manag 23, 2266–2277 (2021). https://doi.org/10.1007/s10163-021-01293-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-021-01293-6

Keywords

Navigation