Skip to main content

Optimized thermochemical detoxification of asbestos-containing waste using chemical additives and microwave heat treatment


Owing to the increasing ACW generation, asbestos detoxification and recycling technologies are required for environmental and economic reasons. Recently, microwave heat treatment is being considered an efficient method for ACW detoxification. In the present study, ACW is detoxified through a microwave heat treatment involving SiC plates. These plates absorb the microwaves and radiate the heat, thereby enhancing the heat treatment efficiency relative to those of existing methods, in which the microwave heat treatment method requires a temperature higher than 1100 °C. In the present study, thermochemical experiments were conducted by applying chemical additives during the microwave heat treatment. To determine the optimal heat treatment temperature based on the chemical added, the detoxification response of the ACW as a function of heat treatment was investigated for different chemical additives, and the crystal structure and microstructure changes were analyzed using X-ray diffraction and scanning electron microscopy. ACW was then detoxified by applying the optimal temperature derived for each chemical additive in microwave heat treatment involving SiC plates. According to the results, asbestos is eliminated in the ACW at 800 and 900 °C with magnesium chloride and sodium hydroxide, respectively, as the additives.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Leonelli C, Veronesi P, Boccaccini DN, Rivasi MR, Barbieri L, Andreola F, Lancellotti I, Rabitti D, Pellacani GC (2006) Microwave thermal inertisation of asbestos containing waste and its recycling in traditional ceramics. J Hazard Mater 135:149–155.

    Article  Google Scholar 

  2. 2.

    Skinner HCW (2003) Mineralogy of asbestos minerals. Indoor Built Environ 12:385–389

    Article  Google Scholar 

  3. 3.

    Iwaszko J, Zawada A, Przerada I, Lubas M (2018) Structural and microstructural aspects of asbestos-cement waste vitrification. Spectrochim Acta Part A Mol Biomol Spectrosc 195:95–102.

    Article  Google Scholar 

  4. 4.

    Siores E, Do Rego D (1995) Microwave applications in materials joining. J Mater Process Technol 48:619–625.

    Article  Google Scholar 

  5. 5.

    Granat K, Nowak D, Pigiel M, Florczak W, Opyd B (2015) Application of microwave radiation in innovative process of neutralising asbestos-containing wastes. Arch Civ Mech Eng 15:188–194.

    Article  Google Scholar 

  6. 6.

    Harris LV, Kahwa IA (2003) Asbestos: old foe in 21st century developing countries. Sci Total Environ 307:1–9.

    Article  Google Scholar 

  7. 7.

    Spasiano D, Pirozzi F (2017) Treatments of asbestos containing wastes. J Environ Manag 204:82–91.

    Article  Google Scholar 

  8. 8.

    International Agency for Research on Cancer (1973) IARC monographs on the evaluation of carcinogenic risk of chemicals to man Volume 2 Some inorganic and organometallic compounds. World Health Organization, Geneva.

    Article  Google Scholar 

  9. 9.

    International Agency for Research on Cancer (1977) IARC monographs on the evaluation of carcinogenic risk of chemicals to man Volume 14 Asbestos. World Health Organization, Geneva.

    Book  Google Scholar 

  10. 10.

    International Agency for Research on Cancer (1987) IARC monographs on the evaluation of the carcinogenic risk of chemicals to humans Overall evaluations of carcinogenicity An updating IARC monographs, vol 1–42. World Health Organization, Geneva.

    Book  Google Scholar 

  11. 11.

    Donaldson K, Tran CL (2004) An introduction to the short-term toxicology of respirable industrial fibres. Mutat. Res./Fundam Mol Mech Mutagen 553:5–9.

    Article  Google Scholar 

  12. 12.

    Berman DW, Crump KS (2008) Update of potency factors for asbestos-related lung cancer and mesothelioma. Crit Rev Toxicol 38:1–47.

    Article  Google Scholar 

  13. 13.

    Roggli VL (2015) The so-called short-fiber controversy: literature review and critical analysis. Arch Pathol Lab Med 139:1052–1057.

    Article  Google Scholar 

  14. 14.

    Falzone L, Marconi A, Loreto C, Franco S, Spandidos DA, Libra M (2016) Occupational exposure to carcinogens: benzene pesticides and fibers. Mol Med Rep 14:4467–4474.

    Article  Google Scholar 

  15. 15.

    Carbone M, Kratzke RA, Testa JR (2002) The pathogenesis of mesothelioma. Semin Oncol 29:2–17.

    Article  Google Scholar 

  16. 16.

    Merler E, Buiatti E, Vainio H (1997) Surveillance and intervention studies on respiratory cancers in asbestos-exposed workers. Scand J Work Environ Health 23:83–92.

    Article  Google Scholar 

  17. 17.

    Niklinski J, Niklinska W, Chyczewska E, Laudanski J, Naumnik W, Chyczewski L, Pluygers E (2004) The epidemiology of asbestos-related diseases. Lung Cancer 45:S7–S15.

    Article  Google Scholar 

  18. 18.

    Promentilla MAB, Peralta GL (2003) An evaluation of landfill disposal of asbestos-containing waste and geothermal residues within a risk-assessment framework. J Mater Cycles Waste Manag 5:13–21.

    Article  Google Scholar 

  19. 19.

    Bojana Z, Dejan U, Miodrag H (2018) review of state of the art techiqure for asbestos waste treatment to support environmental protection projects. In: 13th International Conference on Mang. Saf. Proc. vol 13, pp 105–117

  20. 20.

    Paolini V, Tomassetti L, Segreto M, Borin D, Liotta F, Torre M, Petracchini F (2019) Asbestos treatment technologies. J Mater Cycles Waste Manag 21:205–226.

    Article  Google Scholar 

  21. 21.

    Colangelo F, Cioffi R, Lavorgna M, Verdolotti L, De Stefano L (2011) Treatment and recycling of asbestos-cement containing waste. J Hazard Mater 195:391–397.

    Article  Google Scholar 

  22. 22.

    Gualtieri AF, Cavenati C, Zanatto I, Meloni M, Elmi G, Gualtieri ML (2008) The transformation sequence of cement–asbestos slates up to 1200 °C and safe recycling of the reaction product in stoneware tile mixtures. J Hazard Mater 152:563–570.

    Article  Google Scholar 

  23. 23.

    Jolicoeur C, Duchesne D (1981) Infrared and thermogravimetric studies of the thermal degradation of chrysotile asbestos fibers: evidence for matrix effects. Can J Chem 59:1521–1526.

    Article  Google Scholar 

  24. 24.

    Yoshikawa N, Kashimura K, Hashiguchi M, Sato M, Horikoshi S, Mitani T, Shinohara N (2015) Detoxification mechanism of asbestos materials by microwave treatment. J Hazard Mater 284:201–206.

    Article  Google Scholar 

  25. 25.

    Kashimura K, Yamaguchi T, Sato M, Yoneda S, Kishima T, Horikoshi S, Yoshikawa N, Mitani T, Shinohara N (2015) Rapid transformation of asbestos into harmless waste by a microwave rotary furnace: application of microwave heating to rubble processing of the 2011 Tohoku earthquake. J Hazard Toxic Radioact Waste 19:04014041.

    Article  Google Scholar 

  26. 26.

    Clark DE, Sutton WH (1996) Microwave processing of materials. Annu Rev Mater Sci 26:299–331.

    Article  Google Scholar 

  27. 27.

    Kenkre VM, Skala L, Weiser MW, Katz JD (1991) Theory of microwave interactions in ceramic materials: the phenomenon of thermal runaway. J Mater sci 26:2483–2489.

    Article  Google Scholar 

  28. 28.

    Jianmiao D, Shizong L (2005) Effect of microwave processing on aluminate cement clinkering. J Wuhan Univ Technol-Mater Sci Ed 20:77–79.

    Article  Google Scholar 

  29. 29.

    Hong MH, Joo SY, Kim S, Lee CG, Kim DW, Yoon JH (2020) Asbestos-containing waste detoxification by a microwave heat treatment using silicon carbide as an inorganic heating element. J Mater Cycles Waste Manag 22:826–835.

    Article  Google Scholar 

  30. 30.

    Hong MH, Choi HM, Joo SY, Lee CG, Yoon JH (2020) Study on the detoxification of asbestos-containing wastes (ACW) using SiC plate (in Korean). J Korean Inst Resour Recycl 29:35–42.

    Article  Google Scholar 

  31. 31.

    Yoon S, Jeong H, Park B, Kim Y, Kim H, Park J, Roh Y (2019) Transformation of asbestos-containing slate using exothermic reaction catalysts and heat treatment. Econ Environ Geol 52:627–635.

    Article  Google Scholar 

  32. 32.

    Beruto D, Searcy AW (1976) Calcium oxides of high reactivity. Nature 263:221–222.

    Article  Google Scholar 

  33. 33.

    Burdett G (2006) Investigation of the chrysotile fibres in an asbestos cement sample. Health and Safety Laboratory, London

    Google Scholar 

  34. 34.

    Kozawa T, Onda A, Yanagisawa K, Chiba O, Ishiwata H, Takanami T (2010) Thermal decomposition of chrysotile-containing wastes in a water vapor atmosphere. J Ceram Soc Japan 118:1199–1201.

    Article  Google Scholar 

  35. 35.

    Belardi G, Piga L (2013) Influence of calcium carbonate on the decomposition of asbestos contained in end-of-life products. Thermochim Acta 573:220–228.

    Article  Google Scholar 

  36. 36.

    Kusiorowski R, Zaremba T, Piotrowski J, Gerle A (2013) Thermal decomposition of asbestos-containing materials. J Therm Anal Calorim 113:179–188.

    Article  Google Scholar 

  37. 37.

    Witek J, Kusiorowski R (2017) Neutralization of cement-asbestos waste by melting in an arc-resistance furnace. Waste Manag 69:336–345.

    Article  Google Scholar 

  38. 38.

    Böhme N, Hauke K, Neuroth M, Geisler T (2020) In situ hyperspectral raman imaging of ternesite formation and decomposition at high temperatures. Minerals 10:287.

    Article  Google Scholar 

  39. 39.

    Li J, Zhang H, Lei B, Qin J, Liu Y, Xiao Y, Zheng M, Sha L (2013) Luminescent properties of green long-lasting Ca8Mg(SiO4)4Cl2:Eu2+ from Ca2SiO4:Eu3+ and MgCl2 at low temperature. Phys B Condens Matter 430:31–35.

    Article  Google Scholar 

Download references


This subject is supported by Korea Ministry of Environment (MOE) as "Advanced Technology Program for Environmental Industry" (2018000110009).

Author information



Corresponding author

Correspondence to Jin-Ho Yoon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 7270 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hong, M.H., Joo, S.Y., Kim, D.W. et al. Optimized thermochemical detoxification of asbestos-containing waste using chemical additives and microwave heat treatment. J Mater Cycles Waste Manag (2021).

Download citation


  • Asbestos-containing waste
  • Microwave
  • SiC plate
  • Detoxification
  • Chemical additive