Skip to main content
Log in

The effect of substrate ratio and total solids on biogas production from anaerobic co-digestion of municipal solid waste and sewage sludge

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Recycling waste and converting municipal solid waste (MSW) to useful materials, especially energy sources, is one of the most useful environmental effort, which prevent biological pollution and minimizes the stress on natural resources. This study investigates the improvement of biogas gained from MSW. Anaerobic digestion (AD) MSW and sewage sludge (SS) were studied at different mixing ratios at mesophilic condition. Higher methane yield but longer hydraulic retention time (HRT) was observed by increasing the percentage of MSW. The optimal mixing ratio for biogas production was determined. After 20 days, approximately 90% (376.84 mL/g VS) of the cumulative methane was produced. The same ratio was used for further study on the effect of total solids (TS) (5–25%) on biogas yield. It was found that lower TS levels (5–10%) yield more methane. Biogas production at 5% TS was 64% higher than that of 25% TS. The amounts of methane produced at 5, 10, 15, 20, and 25% TS were 230.3, 196.8, 159.5, 129.4, and 83.3 mL/g VS, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Dong L, Zhenhong Y, Yongming S (2010) Semi-dry mesophilic anaerobic digestion of water sorted organic fraction of municipal solid waste (WS-OFMSW). Biores Technol 101(8):2722–2728. https://doi.org/10.1016/j.biortech.2009.12.007

    Article  Google Scholar 

  2. Bondesson P-M, Galbe M, Zacchi G (2013) Ethanol and biogas production after steam pretreatment of corn stover with or without the addition of sulphuric acid. Biotechnol Biofuels 6(1):11

    Article  Google Scholar 

  3. Komemoto K, Lim Y, Nagao N, Onoue Y, Niwa C, Toda T (2009) Effect of temperature on VFA’s and biogas production in anaerobic solubilization of food waste. Waste Manage 29(12):2950–2955. https://doi.org/10.1177/0734242X0202000303

    Article  Google Scholar 

  4. Neyens E, Baeyens J, Dewil R (2004) Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. J Hazard Mater 106(2–3):83–92. https://doi.org/10.1016/j.jhazmat.2003.11.014

    Article  Google Scholar 

  5. Farokhzad S, keihani A, Perveh S (2012) Energy potential of biogas from waste and animal waste in Iran. In: Seventh national congress agricultural machinery engineering and mechanization, pp 1–9. COI: NCAMEM07_244. https://civilica.com/doc/180960/. Accessed 2 Jan 2021

  6. Nasrollahi-Sarvaghaji S, Alimardani R, Sharifi M, Taghizadeh Yazdi M (2016) Comparison of the environmental impacts of different municipal solid waste treatments using life cycle assessment (LCA)(Case Study: Tehran). Iran J Health Environ (ijhe) 9(2):273–288. https://www.sid.ir/en/journal/ViewPaper.aspx?id=515804. Accessed 10 Dec 2020

  7. Yamashiro T, Lateef SA, Ying C, Beneragama N, Lukic M, Masahiro I, Ihara I, Nishida T, Umetsu K (2013) Anaerobic co-digestion of dairy cow manure and high concentrated food processing waste. J Mater Cycles Waste Manage 15(4):539–547. https://doi.org/10.1007/s10163-012-0110-9

    Article  Google Scholar 

  8. Viotti P, Di Genova P, Falcioli F (2004) Numerical analysis of the anaerobic co-digestion of the organic fraction from municipal solid waste and wastewater: prediction of the possible performances at Olmeto plant in Perugia (Italy). Waste Manage Res 22(2):115–128. https://doi.org/10.1177/0734242X04043892

    Article  Google Scholar 

  9. Bouallagui H, Touhami Y, Cheikh RB, Hamdi M (2005) Bioreactor performance in anaerobic digestion of fruit and vegetable wastes. Process Biochem 40(3–4):989–995. https://doi.org/10.1016/j.procbio.2004.03.007

    Article  Google Scholar 

  10. Capson-Tojo G, Trably E, Rouez M, Crest M, Bernet N, Steyer J-P, Delgenès J-P, Escudié R (2018) Methanosarcina plays a main role during methanogenesis of high-solids food waste and cardboard. Waste Manage 76:423–430. https://doi.org/10.1016/j.wasman.2018.04.004

    Article  Google Scholar 

  11. Grosser A, Neczaj E (2016) Enhancement of biogas production from sewage sludge by addition of grease trap sludge. Energy Convers Manage 125:301–308. https://doi.org/10.1016/j.enconman.2016.05.089

    Article  Google Scholar 

  12. Wickham R, Galway B, Bustamante H, Nghiem LD (2016) Biomethane potential evaluation of co-digestion of sewage sludge and organic wastes. Int Biodeterior Biodegradation 113:3–8. https://doi.org/10.1016/j.ibiod.2016.03.018

    Article  Google Scholar 

  13. Borowski S (2015) Co-digestion of the hydromechanically separated organic fraction of municipal solid waste with sewage sludge. J Environ Manage 147:87–94. https://doi.org/10.1016/j.jenvman.2014.09.013

    Article  Google Scholar 

  14. Ahmadi-Pirlou M, Ebrahimi-Nik M, Khojastehpour M, Ebrahimi SH (2017) Mesophilic co-digestion of municipal solid waste and sewage sludge: Effect of mixing ratio, total solids, and alkaline pretreatment. Int Biodeterior Biodegradation 125:97–104. https://doi.org/10.1016/j.ibiod.2017.09.004

    Article  Google Scholar 

  15. Ostrem KM, Millrath K, Themelis NJ (2004) Combining anaerobic digestion and waste-to-energy. In: 12th Annual North American waste-to-energy Conference. American Society of Mechanical Engineers, pp 265–271

  16. Dobslaw D, Engesser K-H, Störk H, Gerl T (2019) Low-cost process for emission abatement of biogas internal combustion engines. J Clean Prod 227:1079–1092. https://doi.org/10.1016/j.jclepro.2019.04.258

    Article  Google Scholar 

  17. Liao X, Li H, Cheng Y, Chen N, Li C, Yang Y (2014) Process performance of high-solids batch anaerobic digestion of sewage sludge. Environ Technol 35(21):2652–2659. https://doi.org/10.1080/09593330.2014.916756

    Article  Google Scholar 

  18. Cesaro A, Belgiorno V (2013) Sonolysis and ozonation as pretreatment for anaerobic digestion of solid organic waste. Ultrason Sonochem 20(3):931–936. https://doi.org/10.1016/j.ultsonch.2012.10.017

    Article  Google Scholar 

  19. Duan N, Dong B, Wu B, Dai X (2012) High-solid anaerobic digestion of sewage sludge under mesophilic conditions: feasibility study. Biores Technol 104:150–156. https://doi.org/10.1016/j.biortech.2011.10.090

    Article  Google Scholar 

  20. Bollon J, Benbelkacem H, Gourdon R, Buffière P (2013) Measurement of diffusion coefficients in dry anaerobic digestion media. Chem Eng Sci 89:115–119. https://doi.org/10.1016/j.ces.2012.11.036

    Article  Google Scholar 

  21. Ma Y, Liu Y (2019) Turning food waste to energy and resources towards a great environmental and economic sustainability: an innovative integrated biological approach. Biotechnol Adv. https://doi.org/10.1016/j.biotechadv.2019.06.013

    Article  Google Scholar 

  22. Rao M, Singh S (2004) Bioenergy conversion studies of organic fraction of MSW: kinetic studies and gas yield–organic loading relationships for process optimisation. Biores Technol 95(2):173–185. https://doi.org/10.1016/j.biortech.2004.02.013

    Article  Google Scholar 

  23. Fang W, Zhang P, Zhang G, Jin S, Li D, Zhang M, Xu X (2014) Effect of alkaline addition on anaerobic sludge digestion with combined pretreatment of alkaline and high pressure homogenization. Biores Technol 168:167–172. https://doi.org/10.1016/j.biortech.2014.03.050

    Article  Google Scholar 

  24. Cuetos MJ, Fernández C, Gómez X, Morán A (2011) Anaerobic co-digestion of swine manure with energy crop residues. Biotechnol Bioprocess Eng 16(5):1044. https://doi.org/10.1007/s12257-011-0117-4

    Article  Google Scholar 

  25. Angelidaki I, Alves M, Bolzonella D, Borzacconi L, Campos J, Guwy A, Kalyuzhnyi S, Jenicek P, Van Lier J (2009) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 59(5):927–934. https://doi.org/10.2166/wst.2009.040

    Article  Google Scholar 

  26. APHA (1998) Standard methods for the examination of water and wastewater, American Public Health Association (APHA), 20th edn. American Water Works Association, Washington

  27. Voß E, Weichgrebe D, Rosenwinkel K (2009) FOS/TAC–deduction, methods, application and significance. Internationale Winenschaftskonferenz ‘Biogas Science’. https://www.ve-gmbh.de/

  28. Khatri S, Wu S, Kizito S, Zhang W, Li J, Dong R (2015) Synergistic effect of alkaline pretreatment and Fe dosing on batch anaerobic digestion of maize straw. Appl Energy 158:55–64. https://doi.org/10.1016/j.apenergy.2015.08.045

    Article  Google Scholar 

  29. Deublein D, Steinhauser A (2011) Biogas from waste and renewable resources: an introduction. John Wiley & Sons

    Google Scholar 

  30. Cesaro A, Naddeo V, Amodio V, Belgiorno V (2012) Enhanced biogas production from anaerobic codigestion of solid waste by sonolysis. Ultrason Sonochem 19(3):596–600. https://doi.org/10.1016/j.ultsonch.2011.09.002

    Article  Google Scholar 

  31. Sosnowski P, Wieczorek A, Ledakowicz S (2003) Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes. Adv Environ Res 7(3):609–616. https://doi.org/10.1016/S1093-0191(02)00049-7

    Article  Google Scholar 

  32. Siciliano A, Stillitano M, De Rosa S (2016) Biogas production from wet olive mill wastes pretreated with hydrogen peroxide in alkaline conditions. Renewable Energy 85:903–916. https://doi.org/10.1016/j.renene.2015.07.029

    Article  Google Scholar 

  33. Macias-Corral M, Samani Z, Hanson A, Smith G, Funk P, Yu H, Longworth J (2008) Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure. Biores Technol 99(17):8288–8293. https://doi.org/10.1016/j.biortech.2008.03.057

    Article  Google Scholar 

  34. Chen X, Yan W, Sheng K, Sanati M (2014) Comparison of high-solids to liquid anaerobic co-digestion of food waste and green waste. Biores Technol 154:215–221. https://doi.org/10.1016/j.biortech.2013.12.054

    Article  Google Scholar 

  35. Li Y, Park SY, Zhu J (2011) Solid-state anaerobic digestion for methane production from organic waste. Renew Sustain Energy Rev 15(1):821–826. https://doi.org/10.1016/j.rser.2010.07.042

    Article  Google Scholar 

  36. Brown D, Li Y (2013) Solid state anaerobic co-digestion of yard waste and food waste for biogas production. Biores Technol 127:275–280. https://doi.org/10.1016/j.biortech.2012.09.081

    Article  Google Scholar 

  37. Guendouz J, Buffiere P, Cacho J, Carrere M, Delgenes J-P (2008) High-solids anaerobic digestion: comparison of three pilot scales. Water Sci Technol 58(9):1757–1763. https://doi.org/10.2166/wst.2008.521

    Article  Google Scholar 

  38. Liu C-f, Yuan X-z, Zeng G-m, Li W-w, Li J (2008) Prediction of methane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste. Biores Technol 99(4):882–888. https://doi.org/10.1016/j.biortech.2007.01.013

    Article  Google Scholar 

  39. Fonoll X, Astals S, Dosta J, Mata-Alvarez J (2015) Anaerobic co-digestion of sewage sludge and fruit wastes: evaluation of the transitory states when the co-substrate is changed. Chem Eng J 262:1268–1274. https://doi.org/10.1016/j.cej.2014.10.045

    Article  Google Scholar 

  40. Lossie U, Pütz P (2008) Targeted control of biogas plants with the help of FOS/TAC: Practice Report Hach-Lange. https://www.hach.com/

  41. Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85(4):849–860. https://doi.org/10.1007/s00253-009-2246-7

    Article  Google Scholar 

  42. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Biores Technol 99(10):4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057

    Article  Google Scholar 

  43. Sung S, Liu T (2003) Ammonia inhibition on thermophilic anaerobic digestion. Chemosphere 53(1):43–52. https://doi.org/10.1016/j.biortech.2009.12.007

    Article  Google Scholar 

Download references

Acknowledgements

This study was conducted with the financial support of University of Mohaghegh Ardabili (Ardabil, Iran) and Biosystems Engineering Department. The author’s thanks are also extended to Dr. MohammadAli EbrahimiNik for his support and help in completing the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarahom Mesri Gundoshmian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi-Pirlou, M., Mesri Gundoshmian, T. The effect of substrate ratio and total solids on biogas production from anaerobic co-digestion of municipal solid waste and sewage sludge. J Mater Cycles Waste Manag 23, 1938–1946 (2021). https://doi.org/10.1007/s10163-021-01264-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-021-01264-x

Keywords

Navigation