Skip to main content
Log in

Hydrophilicity enhancement of low-temperature lignocellulosic biochar modified by physical–chemical techniques

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Creation of oxygen-containing functional groups on the biochar surface can highly improve its hydrophilicity and amend its behaviour in aquatic systems. Hydrogen peroxide, ozone, potassium permanganate and nitrogen acid were most usually used reagents for the surface oxidation. On the contrary, biochar activation by strong acids can be a costly process at the industrial scale and can raise environmental problems due to the disposal of activated carbon. Hence, there is a need to search for cheaper and cleaner products for the modification of biochar. For this reason, weak acids, such as solution of rhamnolipids or rainfall water solution, can be used. In this study, it was found that lower size biochar particles had higher wettability compared to larger size particles, since it was categorized as slightly hydrophobic (2.67 s). Steam of average concentration of rhamnolipid solution (20 mg/l) had the highest effect on the enhancement of biochar surface area (15.2 m2/g) and satisfactory impact on the reduction of initial hydrophobicity (4210 s). Biochar modified with increased concentration of nitric acid solution (from 65 to 20%) wettability was in accordance with the increase of surface area (from 4210 to 3907 s and from 1.27 to 4.36 m2/g).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ahmed MB, Zhou JL, Ngo HH, Guo W, Chen M (2016) Progress in the preparation and application of modified biochar for improved contaminant removal from water and wastewater. Bioresour Technol 214:836–851. https://doi.org/10.1016/j.biortech.2016.05.057

    Article  Google Scholar 

  2. Ahmed MB, Zhou JL, Ngo HH, Guo W, Johir MAH, Sornalingam K, Rahman MS (2017) Chloramphenicol interaction with functionalized biochar in water: sorptive mechanism, molecular imprinting effect and repeatable application. Sci Total Environ 609:885–895. https://doi.org/10.1016/j.scitotenv.2017.07.239

    Article  Google Scholar 

  3. Alothman ZA (2012) A review: fundamental aspects of silicate mesoporous materials. Mater 5(12):2874–2902. https://doi.org/10.3390/ma5122874

    Article  Google Scholar 

  4. Baltrėnas P, Baltrėnaitė E, Usevičiūtė L (2019) Bioanglies hidrofiliškumo didinimo įrenginys ir būdas (LT patent No. LT 6661 B). Lithuanian Patent Office

  5. Bhatnagar A, Hoagland W, Marques M, Sillanpaa M (2013) An overview of the modification methods of activated carbon for its water treatment applications. Chem Eng J 219:499–511. https://doi.org/10.1016/j.cej.2012.12.038

    Article  Google Scholar 

  6. Chan WH, Mazlee MN, Ahmad ZA, Ishak MAM, Shamsul JB (2017) The development of low cost adsorbents from clay and waste materials: a review. J Mater Cycles Waste Manag 19:1–14

    Article  Google Scholar 

  7. Chemerys V, Baltrėnaitė-Gedienė E, Baltrėnas P, Dobele G (2020) Influence of H2O2 modification on the adsorptive properties of birch-derived biochar. Pol J Environl Stud 29(1):579–588. https://doi.org/10.15244/pjoes/105241

    Article  Google Scholar 

  8. Chen W, Zhang S, He F, Lu W, Xv H (2019) Porosity and surface chemistry development and thermal degradation of textile waste jute during recycling as activated carbon. J Mater Cycles Waste Manag 21:315–325

    Article  Google Scholar 

  9. Das O, Sarmah AK (2015) The love-hate relationship of pyrolysis biochar and water: a perspective. Sci Total Environ 512–513:682–685. https://doi.org/10.1016/j.scitotenv.2015.01.061

    Article  Google Scholar 

  10. Fizinių ir technologijos mokslų centras (2019) Tolimųjų oro teršalų pernašų iš kitų valstybių poveikio bendram Lietuvos oro baseino užterštumo lygiui Lietuvoje įvertinimas—2016. Ataskaita [Report]

  11. Gao X, Wu L, Li Z, Xu Q, Tian W, Wang R (2018) Preparation and characterization of high surface area activated carbon from pine wood sawdust by fast activation with H3PO4 in a spouted bed. J Mater Cycles Waste Manag 20:925–936

    Article  Google Scholar 

  12. Godwin PM, Pan Y, Xiao H, Afzal MT (2019) Progress in preparation and application of modified biochar for improving heavy metal ion removal from wastewater. J Mater Cycles Waste Manag 4(1):31–42

    Google Scholar 

  13. Gokce Y, Aktas Z (2014) Nitric acid modification of activated carbon produced from waste tea and adsorption of methylene blue and phenol. Appl Surf Sci 313:352–359

    Article  Google Scholar 

  14. Gray M, Johnson MG, Dragila MI, Kleber M (2014) Water uptkae in biochars: the roles of porosity and hydrophobicity. Biomass Bioenerg 61:196–205. https://doi.org/10.1016/j.biombioe.2013.12.010

    Article  Google Scholar 

  15. Guzel F, Saygili H, Saygili GA, Koyuncu F, Yilmaz C (2017) Optimal oxidation with nitric acid of biochar derived from pyrolysis of weeds and its application in removal of hazardous dye methylene blue from aqueous solution. J Clean Prod 144:260–265. https://doi.org/10.1016/j.jclepro.2017.01.029

    Article  Google Scholar 

  16. Hadjittofi L, Prodromou M, Pashalidis I (2014) Activated biochar derived from cactus fibre—preparation, characterization and application on Cu(II) removal from aqueous solutions. Bioresour Technol 159:460–464

    Article  Google Scholar 

  17. Huff MD, Lee JW (2016) Biochar-surface oxygenation with hydrogen peroxide. J Environ Manage 165:17–21. https://doi.org/10.1016/j.envman.2015.08.046

    Article  Google Scholar 

  18. Inyang M, Dickenson E (2015) The potential role of biochar in the removal of organic and microbial contaminants from potable and reuse water: a review. Chemosphere 134:232–240. https://doi.org/10.1016/j.chemosphere.2015.03.072

    Article  Google Scholar 

  19. Jia YF, Thomas KM (2000) Adsorption of cadmium ions on oxygen surface sites in activated carbon. Langmuir 16(3):1114–1122. https://doi.org/10.1021/la990436w

    Article  Google Scholar 

  20. Kinney TJ, Masiello CA, Dugan B, Hockaday WC, Dean MR, Zygourakis K, Barnes RT (2012) Hydrologic properties of biochars produced at different temperatures. Biomass Bioenerg 41:34–43. https://doi.org/10.1016/j.biombioe.2012.01.033

    Article  Google Scholar 

  21. Li B, Yang L, Wang CQ, Zhang QP, Liu QC, Li YD, Xiao R (2017) Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes. Chemosphere 175:332–340. https://doi.org/10.1016/j.chemosphere.2017.02.061

    Article  Google Scholar 

  22. Li K, Jiang Y, Wang X, Bai D, Li H, Zheng Z (2016) Effect of nitric acid modification on the lead(II) adsorption of mesoporous biochars with different mesopore size distributions. Clean Technol Environ Policy 18:797–805. https://doi.org/10.1007/s10098-015-1056-0

    Article  Google Scholar 

  23. Li Y, Shao J, Wang X, Deng Y, Yang H, Chen H (2014) Characterization of modified biochars derived from bamboo pyrolysis and their utilization for target component (furfural) adsorption. Energy Fuels 28(8):5119–5127. https://doi.org/10.1021/ef500725c

    Article  Google Scholar 

  24. Li Z, Liu X, Wang Y (2019) Modification of sludge-based biochar and its application to phosphorus adsorption from aqueous aolution. J Mater Cycles Waste Manag 22:123–132

    Article  Google Scholar 

  25. Li Z, Zhang Y, Lin J, Wang W, Li S (2019) High-yield di-rhamnolipid production by Pseudomonas aeruginosa YM4 and its potential application in MEOR. Molecules 24(7):1433. https://doi.org/10.3390/molecules24071433

    Article  Google Scholar 

  26. Liao W, Thomas SC (2019) Biochar particle size and post-pyrolsysis mechanical processing affect soil pH, water retention capacity, and plant performance. Soil Syst 3(1):14. https://doi.org/10.3390/soilsystems3010014

    Article  Google Scholar 

  27. Liu P, Liu WJ, Jiang H, Chen JJ, Li WW, Yu HQ (2012) Modification of biochar derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresour Technol 121:235–240. https://doi.org/10.1016/j.biortech.2012.06.085

    Article  Google Scholar 

  28. Liu X, Liu L, Osaka Y, Huang H, He Z, Bai Y, Li S, Li J, Li H (2018) Study on desulfurization performance of MnO2-based activated carbon from waste coconut shell for diesel emissions control. J Mater Cycles Waste Manag 20:1499–1506

    Article  Google Scholar 

  29. Liu Z, Niu W, Chu H, Zhou T, Niu Z (2018) Effect of the carbonization temperature on the properties of biochar produced from the pyrolysis of crop residues. BioRes 13(2):3429–3446. https://doi.org/10.15376/biores.13.2.3429-3446

    Article  Google Scholar 

  30. Lou K, Rajapaksha AU, Ok YS, Chang SX (2016) Pyrolysis temperature and steam activation effects on sorption of phosphate on pine sawdust biochars in aqueous solutions. Chem Spec bioavailab 28(1–4):42–50. https://doi.org/10.1080/09542299.2016.1165080

    Article  Google Scholar 

  31. Maneedaeng A, Flood AE (2016) Synergisms in binary mixtures of anionic and pH-insensitive zwitterionic surfactants and their precipitation behavior with calcium ions. J Surfcactants Deterg 20:263–275. https://doi.org/10.1007/s11743-016-1902-z

    Article  Google Scholar 

  32. Mathurasa L, Damrongsiri S (2017) Possibility of suing surfactants to increase nitrogen adsorption on rice husk. Appl Environ Res 31:11–22

    Article  Google Scholar 

  33. Mathurasa L, Damrongsiri S (2018) Low cost and easy rice husk modification to efficiently enhance ammonium and nitrate adsorption. Int J Recycl Org Waste Agric 7:143–151

    Article  Google Scholar 

  34. Mendes AN, Filgueiras LA, Pinto CP, Nele M (2015) Physicochemical properties of Rhamnolipid biodurfactant from Pseudomonas aeruginosa PA1 to applications in microemulsions. J Biomater Nanobiotechnol 06(01):64–79. https://doi.org/10.4236/jbnb.2015.61007

    Article  Google Scholar 

  35. Nguyen DH, Tran HN, Chao HP, Lin CC (2019) Effect of nitric acid oxidation of hydrochars to sorb methylene blue: an adsorption mechanism comparison. Adsorpt Sci Technol 37(7–8):607–622. https://doi.org/10.1177/0263617419867519

    Article  Google Scholar 

  36. O’Reilly JM, Mosher RA (1983) Functional groups in carbon black by FTIR spectroscopy. Carbon 21(1):47–51. https://doi.org/10.1016/0008-6223(83)90155-0

    Article  Google Scholar 

  37. Oliveira FR, Patel AK, Jaisi DP, Adhikari S, Lu H, Khanal SK (2017) Environmental application of biochar: current status and perspectives. Bioresour technol 246:110–122. https://doi.org/10.1016/j.biortech.2017.08.122

    Article  Google Scholar 

  38. Peiris C, Nayanathara O, Navarathna CM, Jayawardhana Y, Nawalage S, Burk G, Karunanayake AG, Madduri SB, Vithanage M, Kaumal MN, Mlsna TE, Hassan EB, Abeysundara S, Ferez F, Gunatilake SR (2019) The influence of three acid modifications on the physicochemical characteristics of tea-waste biochar pyrolyzed at different temperatures: a comparatice study. RSC Adv 9:17612–17622

    Article  Google Scholar 

  39. Qian Q, Machida M, Aikawa M, Tatsumoto H (2008) Effect of ZnCl2 impregnation ratio on pore structure of activated carbons prepared from cattle manure compost: application of N2 adsorption-desorption isotherms. J Mater Cycles Waste Manag 10:53–61

    Article  Google Scholar 

  40. Razak IS, Latif MT, Jaafar SA, Khan MF, Mushrifah I (2015) Surfactants in atmospheric aerosols and rainwater around lake ecosystem. Environ Sci Pollut Res Int 22(8):6024–6033. https://doi.org/10.1007/s11356-014-3781-z

    Article  Google Scholar 

  41. Rikalovič MG, Vrvič M, Karadžič IM (2015) Rhamnolipid biosurfactant from Pseudomonas aeruginosa—from discovery to application in contemporary technology. J Serb Chem Soc 80(3):279–304. https://doi.org/10.2298/JSC140627096R

    Article  Google Scholar 

  42. Sahin O, Taskin MB, Kaya EC, Atakol O, Emir E, Inal A, Gunes A (2017) Effect of acid modification of biochar on nutrient availability and maize growth in a calcareous soil. Soil Use Manag 33:447–456. https://doi.org/10.1111/sum.12360

    Article  Google Scholar 

  43. Sajjadi B, Chen WY, Egiebor NO (2018) A comprehensive review on physical activation of biochar for energy and environmental applications. Rev Chem Eng. https://doi.org/10.1515/revce-2017-0113

    Article  Google Scholar 

  44. Setiawati E, Prijono S, Mardiana D, Prayogo C, Soemarno W (2019) Impact of pyrolysis temperature and water quenching on hydrophilicity of biochar derived from durian wood waste. Biosci Res 16(2):2047–2062

    Google Scholar 

  45. Shaheed R, Wan Mohtar WM, Ahmed ES (2017) Ensuring water security by utilizing roof-harvested rainwater and lake water treated with a low-cost integrated adsorption-filtration systema. Water Sci Eng 10(2):115–124

    Article  Google Scholar 

  46. Shim T, Yoo J, Ryu C, Park YK, Jung J (2015) Effect of steam activation of biochar produced from a giant Miscanthus on copper sorption and toxicity. Bioresour Technol 197:85–90. https://doi.org/10.1016/j.biortech.2015.08.055

    Article  Google Scholar 

  47. Shimada M, Iida T, Kawarada K, Chiba Y, Momoto T, Pkayama T (2000) Porous structure of activated carbon prepared from waste newspaper. J Mater Cycles Waste Manag 2:100–108

    Google Scholar 

  48. Sizmur T, Fresno T, Akgul G, Frost H, Moreno-Jimenez E (2017) Biochar modification to enhance sorption of inorganics from water. Bioresour Technol 246:34–47. https://doi.org/10.1016/j.biortech.2017.07.082

    Article  Google Scholar 

  49. Smetanova A, Dotterweich D, Ulrich U, Fohrer N (2013) Influence of biochar and terra preta substrates on wettability and erodibility of soild. Z Geomorphol 57:111–134. https://doi.org/10.1127/0372-8854/2012/S-00117

    Article  Google Scholar 

  50. Tan IAW, Abdullah MO, Lim LLP, Yeo THC (2017) Surface modification and characterization of coconut shell-based activated carbon subjected to acidic and alkaline treatments. J Appl Sci Eng 4(2):186–194. https://doi.org/10.33736/jaspe.435.2017

    Article  Google Scholar 

  51. Tasca AL, Puccini M, Stefanelli E, Gori R (2020) Investigating the activation of hydrochar from sewage sludge for the removal of terbuthylazine from aqueous solutions. J Mater Cycles Waste Manag 22(5):1539–1551

    Article  Google Scholar 

  52. Tiso T, Zauter R, Tulke H, Lauchtle B, Li WJ, Behrens B, Wittgens A, Rosenau F, Hayen H, Blank LM (2017) Designer rhamnolipids by reduction of congener diversity: production and characterization. Microb Cell Fact 16:225. https://doi.org/10.1186/s12934-017-0838-y

    Article  Google Scholar 

  53. Tsai WT, Jiang TJ, Lin YQ (2018) Conversion of de-ashed cocoa pod husk into high-surface-area microporous carbon materials by CO2 physical activation. J Mater Cycles Waste Manag 21(2):308–314

    Article  Google Scholar 

  54. Tsyntarski B, Toteva VB, Nickolov RN, Banchev I, Stoycheva I, Gonsalvesh L, Petrova B, Georgiev G, Vasileva M, Budinova T, Petrov N (2020) Conversion of waste algae from biodiesel production to valuable gas, liquid and solid products. J Mater Cycles Waste Manag 22:1176–1183

    Article  Google Scholar 

  55. US Environmental Protection Agency (2004) Biopesticides registration action document, rhamnolipid biosurfactant (PC Code 110029)

  56. Usevičiūtė L, Baltrėnaitė E (2020) Methods for determining lignocellulosic biochar wettability. Waste Biomass Valori 11:4457–4468. https://doi.org/10.1007/s12649-019-00713-x

    Article  Google Scholar 

  57. Vijayaraghavan, (2019) Recent advancements in biochar preparation, feedstocks, modification, characterization and future applications. Environ Technol Rev 8(1):47–64

    Article  Google Scholar 

  58. Vu KA, Tawiq K, Chen G (2015) Rhamnolipid transport in biochar-amended agricultural soil. Water Air Soil Pollut 226:256. https://doi.org/10.1007/s11270-015-2497-0

    Article  Google Scholar 

  59. Wang B, Gao B, Fang J (2017) Recent advances in engineered biochar productions and applications. Crit Rev Environ Sci Technol 47(22):2158–2207

    Article  Google Scholar 

  60. Wang J, Wang S (2019) Preparation, modification and environmental application of biochar: a review. J Clean Prod 227(1):1002–1022

    Article  Google Scholar 

  61. Wei D, Li B, Huang H, Luo L, Zhang J, Yang Y, Guo J, Tang L, Zeng G, Zhou Y (2018) Biochar-based functional materials in the purification of agricultural wastewater: fabrication, application and future research needs. Chemosphere 197:165–180

    Article  Google Scholar 

  62. Wolak E, Vogt E, Szczurowski J (2017) Chemical and hydrophobic modification of activated WD-axtra carbon. Energ Fuel 14:1–8

    Google Scholar 

  63. Wu L, Shang Z, Wang H, Wan W, Gao X, Li Z, Kobayashi N (2018) Production of activated carbon from walnut shell by CO2 activation in a fluidized bed reactor and its adsorption performance of copper ion. J Mater Cycles Waste Manag 20:1676–1688

    Article  Google Scholar 

  64. Wu W, Li J, Niazi NK, Muller K, Chu Y, Zhang L, Yuan G, Lu K, Song Z, Wang H (2016) Influence of pyrolysis temperature on lead immobilization by chemically modified coconut fiber-derived biochars in aqueous environments. Environ Sci Pollut Res 23(22):22890–22896

    Article  Google Scholar 

  65. Xu C, Zhou G, Qiu H (2017) Analysis of the microscopic mechanism of coal wettability evolution in different metamorphic states based on NMR and XPS experiments. RSC Adv 7(76):47954–47965. https://doi.org/10.1039/C7RA07905B

    Article  Google Scholar 

  66. Yakout SM, Daifullah AEHM, El-Reefy SA (2015) Pore structure characterization of chemically modified biochar derived from rice straw. Environ Eng Manag J 14(2):473–480

    Article  Google Scholar 

  67. Yang X, Zhang S, Ju M, Liu L (2019) Preparation and modification of biochar materials and their application in soil remediation. Appl Sci 9(7):1365

    Article  Google Scholar 

  68. Zakaria ZA (2018) Sustainable technologies for the management of agricultural wastes. Springer, Singapore

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiza Usevičiūtė.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Usevičiūtė, L., Baltrėnaitė-Gedienė, E. & Baltrėnas, P. Hydrophilicity enhancement of low-temperature lignocellulosic biochar modified by physical–chemical techniques. J Mater Cycles Waste Manag 23, 1838–1854 (2021). https://doi.org/10.1007/s10163-021-01255-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-021-01255-y

Keywords

Navigation