Skip to main content

Advanced fabrication and multi-properties of aluminium hydroxide aerogels from aluminium wastes

A Correction to this article was published on 19 March 2021

This article has been updated

Abstract

Over 60 million tons of aluminium are produced annually, requiring sustainable and eco-friendly recycling methods of aluminium waste. In this work, aluminium metal waste is utilized in the fabrication of aluminium hydroxide aerogels using a cost-effective and environmental-friendly process. The developed aerogels with varying contents of aluminium and poly(vinyl alcohol) as a binder exhibit a low density (0.060–0.108 g/cm3), a high porosity (92.3–95.5%) and a low electrical conductivity ([1.8–5.2] × 10–8 S/m). The results indicated that aluminium hydroxide aerogels have an ultra-low thermal conductivity of 0.028–0.032 W/m K and are able to withstand high temperature of 800 °C with less than 50% decomposition. It is suggested that the synthesized aerogels can be a promising candidate for high-value engineering applications such as thermal insulation of pipes and buildings to expand the usage of recycled aluminium.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Change history

References

  1. 1.

    Maher JP (1997) Aluminium, gallium, indium and thallium. Annu Rep Prog Chem Sect A. https://doi.org/10.1039/ic9969300045

    Article  Google Scholar 

  2. 2.

    Fröhlich P, Lorenz T, Martin G, Brett B, Bertau M (2017) Valuable metals—recovery processes, current trends, and recycling strategies. Angew Chem Int Ed. https://doi.org/10.1002/anie.201605417

    Article  Google Scholar 

  3. 3.

    Yash D, Prasad E (2019) Aluminum market by end user, processing method and series - global opportunity analysis and industry forecast, 2019–2026

  4. 4.

    Ab-Rahim SN, Lajis MA, Ariffin S (2015) A review on recycling aluminum chips by hot extrusion process. Procedia CIRP. https://doi.org/10.1016/j.procir.2015.01.013

    Article  Google Scholar 

  5. 5.

    Bertram M, Ramkumar S, Rechberger H, Rombach G, Bayliss C, Martchek KJ, Müller DB, Liu G (2017) A regionally-linked, dynamic material flow modelling tool for rolled, extruded and cast aluminium products. Resour Conserv Recycl 125:48–69. https://doi.org/10.1016/j.resconrec.2017.05.014

    Article  Google Scholar 

  6. 6.

    Schlesinger ME (1983) Aluminium-recycling. CRC Press, Boca Raton

    Google Scholar 

  7. 7.

    Güley V, Ben-Khalifa N, Tekkaya AE (2010) Direct recycling of 1050 aluminum alloy scrap material mixed with 6060 aluminum alloy chips by hot extrusion. Int J Mater Form. 3:853–856. https://doi.org/10.1007/s12289-010-0904-z

    Article  Google Scholar 

  8. 8.

    Wuebbles DS, Tamaresis JS (1993) The role of methane in the global environment. In: Atmos Methane Sources, Sink. Role Glob. Chang. Springer Berlin Heidelberg, Berlin, pp. 469–513. https://doi.org/https://doi.org/10.1007/978-3-642-84605-2_20.

  9. 9.

    Xiao Y, Reuter MA, Boin U (2005) Aluminium recycling and environmental issues of salt slag treatment. J Environ Sci Heal Part A Toxic/Hazardous Subst Environ Eng. https://doi.org/10.1080/10934520500183824

    Article  Google Scholar 

  10. 10.

    Soo VK, Peeters J, Paraskevas D, Compston P, Doolan M, Duflou JR (2018) Sustainable aluminium recycling of end-of-life products: a joining techniques perspective. J Clean Prod 178:119–132. https://doi.org/10.1016/j.jclepro.2017.12.235

    Article  Google Scholar 

  11. 11.

    Grimaud G, Perry N, Laratte B (2018) Aluminium cables recycling process: environmental impacts identification and reduction. Resour Conserv Recycl 135:150–162. https://doi.org/10.1016/j.resconrec.2017.11.010

    Article  Google Scholar 

  12. 12.

    Shamsudin S, Lajis M, Zhong ZW (2016) Evolutionary in solid state recycling techniques of aluminium: a review. Procedia CIRP. https://doi.org/10.1016/j.procir.2016.01.117

    Article  Google Scholar 

  13. 13.

    Technavio Research, Global Aluminum Foil Market 2020–2024, (2020). https://www.technavio.com/. Accessed 20 Apr 2020

  14. 14.

    Ratke, B. Milow (2011) Aerogels for foundry applications. In: Aerogels Handbook. Springer New York, pp 763–788. https://doi.org/https://doi.org/10.1007/978-1-4419-7589-8_34

  15. 15.

    De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631. https://doi.org/10.1021/acs.chemmater.7b00531

    Article  Google Scholar 

  16. 16.

    Tao Y, Endo M, Kaneko K (2010) A review of synthesis and nanopore structures of organic polymer aerogels and carbon aerogels. Recent Patents Chem Eng 1:192–200. https://doi.org/10.2174/1874478810801030192

    Article  Google Scholar 

  17. 17.

    Gurav JL, Jung IK, Park HH, Kang ES, Nadargi DY (2010) Silica aerogel: synthesis and applications. J Nanomater 2010:409310. https://doi.org/10.1155/2010/409310

    Article  Google Scholar 

  18. 18.

    Zhao W, Zhu J, Wei W, Ma L, Zhu J, Xie J (2018) Comparative study of modified/non-modified aluminum and silica aerogels for anionic dye adsorption performance. RSC Adv 8:29129–29140. https://doi.org/10.1039/c8ra05532g

    Article  Google Scholar 

  19. 19.

    Yang W, Dou X, Li Y, Mohan D, Pittman CU, Ok YS (2016) Performance and mass transfer of aqueous fluoride removal by a magnetic alumina aerogel. RSC Adv 6:112988–112999. https://doi.org/10.1039/c6ra23532h

    Article  Google Scholar 

  20. 20.

    Hou X, Zhang R, Fang D (2017) Novel whisker-reinforced Al2O3–SiO2 aerogel composites with ultra-low thermal conductivity. Ceram Int 43:9547–9551. https://doi.org/10.1016/j.ceramint.2017.04.043

    Article  Google Scholar 

  21. 21.

    Gao B, Yuan G, Ren L (2018) Polydiacetylene-functionalized alumina aerogels as visually observable sensing materials for detecting VOCs concentration. J Mater Sci 53:6698–6706. https://doi.org/10.1007/s10853-018-1988-y

    Article  Google Scholar 

  22. 22.

    Yang J, Wang Q, Wang T, Liang Y (2017) Facile one-step precursor-to-aerogel synthesis of silica-doped alumina aerogels with high specific surface area at elevated temperatures. J Porous Mater 24:889–897. https://doi.org/10.1007/s10934-016-0328-3

    Article  Google Scholar 

  23. 23.

    Mei J, Yuan G, Bai J, Ma Y, Ren L (2019) One-pot synthesis of bimetallic catalyst loaded on alumina aerogel as green heterogeneous catalyst: efficiency, stability, and mechanism. J Taiwan Inst Chem Eng 101:41–49. https://doi.org/10.1016/j.jtice.2019.04.033

    Article  Google Scholar 

  24. 24.

    Le DK, Leung RIH, Er ASR, Zhang X, Tay XJ, Thai QB, Phan-Thien N, Duong HM (2019) Applications of functionalized polyethylene terephthalate aerogels from plastic bottle waste. Waste Manag 100:296–305. https://doi.org/10.1016/j.wasman.2019.09.031

    Article  Google Scholar 

  25. 25.

    Ba-Thai Q, Ee-Siang T, Khac-Le D, Shah WA, Phan-Thien N, Duong HM (2019) Advanced fabrication and multi-properties of rubber aerogels from car tire waste. Colloids Surf A Physicochem Eng Asp 577:702–708. https://doi.org/10.1016/j.colsurfa.2019.06.029

    Article  Google Scholar 

  26. 26.

    Cheng H, Gu B, Pennefather MP, Nguyen TX, Phan-Thien N, Duong HM (2017) Cotton aerogels and cotton-cellulose aerogels from environmental waste for oil spillage cleanup. Mater Des 130:452–458. https://doi.org/10.1016/j.matdes.2017.05.082

    Article  Google Scholar 

  27. 27.

    Do NHN, Luu TP, Thai QB, Le DK, Chau NDQ, Nguyen ST, Le PK, Phan-Thien N, Duong HM (2020) Advanced fabrication and application of pineapple aerogels from agricultural waste. Mater Technol 35:807–814. https://doi.org/10.1080/10667857.2019.1688537

    Article  Google Scholar 

  28. 28.

    Yam BJY, Le DK, Do NH, Nguyen PTT, Thai QB, Phan-Thien N, Duong HM (2020) Recycling of magnesium waste into magnesium hydroxide aerogels. J Environ Chem Eng 8:104101. https://doi.org/10.1016/j.jece.2020.104101

    Article  Google Scholar 

  29. 29.

    Thai QB, Nguyen ST, Ho DK, Du Tran T, Huynh DM, Do NHN, Luu TP, Le PK, Le DK, Phan-Thien N, Duong HM (2020) Cellulose-based aerogels from sugarcane bagasse for oil spill-cleaning and heat insulation applications. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2019.115365

    Article  Google Scholar 

  30. 30.

    Zhang X, Kwek LP, Le DK, Tan MS, Duong HM (2019) Fabrication and properties of hybrid coffee-cellulose aerogels from spent coffee grounds. Polymers (Basel). https://doi.org/10.3390/polym11121942

    Article  Google Scholar 

  31. 31.

    Thai QB, Le DK, Luu TP, Hoang N, Nguyen D, Duong HM (2019) Aerogels from wastes and their applications fabrication methods and morphologies of aerogels from wastes cellulose aerogels from paper waste cotton aerogels from textile waste. JOJ Mater Sci 5:1–5. https://doi.org/10.19080/JOJMS.2019.05.555663

    Article  Google Scholar 

  32. 32.

    Shen D, Liu J, Gan L, Huang N, Long M (2018) Green synthesis of Fe3O4/cellulose/polyvinyl alcohol hybride aerogel and its application for dye removal. J Polym Environ 26:2234–2242. https://doi.org/10.1007/s10924-017-1116-0

    Article  Google Scholar 

  33. 33.

    Xu Z, Jiang X, Zhou H, Li J (2018) Preparation of magnetic hydrophobic polyvinyl alcohol (PVA)–cellulose nanofiber (CNF) aerogels as effective oil absorbents. Cellulose 25:1217–1227. https://doi.org/10.1007/s10570-017-1619-9

    Article  Google Scholar 

  34. 34.

    Kang AH, Shang K, Ye DD, Wang YT, Wang H, Zhu ZM, Liao W, Xu SM, Wang YZ, Schiraldi DA (2017) Rejuvenated fly ash in poly(vinyl alcohol)-based composite aerogels with high fire safety and smoke suppression. Chem Eng J 327:992–999. https://doi.org/10.1016/j.cej.2017.06.158

    Article  Google Scholar 

  35. 35.

    Goudarzi M, Ghanbari D, Salavati-Niasari M (2015) Room temperature preparation of aluminum hydroxide nanoparticles and flame retardant poly vinyl alcohol nanocomposite. J Nanostruct 5(2):110–115. https://doi.org/10.7508/jns.2015.02.005

    Article  Google Scholar 

  36. 36.

    Lamberti M, Escher F (2007) Aluminium foil as a food packaging material in comparison with other materials. Food Rev Int 23:407–433. https://doi.org/10.1080/87559120701593830

    Article  Google Scholar 

  37. 37.

    Zou Q, Li J, Li Y (2015) Preparation and characterization of vanillin-crosslinked chitosan therapeutic bioactive microcarriers. Int J Biol Macromol 79:736–747. https://doi.org/10.1016/j.ijbiomac.2015.05.037

    Article  Google Scholar 

  38. 38.

    González-Gómez MA, Belderbos S, Yañez-Vilar S, Piñeiro Y, Cleeren F, Bormans G, Deroose CM, Gsell W, Himmelreich U, Rivas J (2019) Development of superparamagnetic nanoparticles coated with polyacrylic acid and aluminum hydroxide as an efficient contrast agent for multimodal imaging. Nanomaterials 9:1626. https://doi.org/10.3390/nano9111626

    Article  Google Scholar 

  39. 39.

    González-Gómez MA, Belderbos S, Yañez-Vilar S, Piñeiro Y, Cleeren F, Bormans G, Deroose CM, Gsell W, Himmelreich U, Rivas J (2019) Development of superparamagnetic nanoparticles coated with polyacrylic acid and aluminum hydroxide as an efficient contrast agent for multimodal imaging. Nanomaterials. https://doi.org/10.3390/nano9111626

    Article  Google Scholar 

  40. 40.

    Lei Z, Li X, Li Z, Qu J, Zhang Q, Huang J, Li H (2017) Potassium fixation and the separation from sodium through the formation of K-alunite using activated aluminum hydroxide. Sep Sci Technol 52:1862–1868. https://doi.org/10.1080/01496395.2017.1304418

    Article  Google Scholar 

  41. 41.

    Mansur HS, Sadahira CM, Souza AN, Mansur AAP (2008) FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C 28:539–548. https://doi.org/10.1016/j.msec.2007.10.088

    Article  Google Scholar 

  42. 42.

    Lemmon EW, Jacobsen RT (2004) Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. Int J Thermophys 25:21–69. https://doi.org/10.1023/B:IJOT.0000022327.04529.f3

    Article  Google Scholar 

  43. 43.

    Sumirat I, Ando Y, Shimamura S (2006) Theoretical consideration of the effect of porosity on thermal conductivity of porous materials. J Porous Mater 13:439–443. https://doi.org/10.1007/s10934-006-8043-0

    Article  Google Scholar 

  44. 44.

    Hrubesh LW, Pekala RW (1994) Thermal properties of organic and inorganic aerogels. J Mater Res 9:731–738. https://doi.org/10.1557/jmr.1994.0731

    Article  Google Scholar 

  45. 45.

    Jelle BP, Baetens R, Gustavsen A (2015) Aerogel insulation for building applications. In: Sol-Gel Handbook. Wiley Blackwell, pp. 1385–1412. https://doi.org/https://doi.org/10.1002/9783527670819.ch45

  46. 46.

    Nguyen ST, Feng J, Ng SK, Wong JPW, Tan VBC, Duong HM (2014) Advanced thermal insulation and absorption properties of recycled cellulose aerogels. Colloids Surf A Physicochem Eng Asp 445:128–134. https://doi.org/10.1016/j.colsurfa.2014.01.015

    Article  Google Scholar 

  47. 47.

    Feng J, Le D, Nguyen ST, Tan Chin Nien V, Jewell D, Duong HM (2016) Silica–cellulose hybrid aerogels for thermal and acoustic insulation applications. Colloids Surf A Physicochem Eng Asp 506:298–305. https://doi.org/10.1016/j.colsurfa.2016.06.052

    Article  Google Scholar 

  48. 48.

    Jia X, Dai B, Zhu Z, Wang J, Qiao W, Long D, Ling L (2016) Strong and machinable carbon aerogel monoliths with low thermal conductivity prepared via ambient pressure drying. Carbon N Y 108:551–560. https://doi.org/10.1016/j.carbon.2016.07.060

    Article  Google Scholar 

  49. 49.

    Gomaa MM, Hugenschmidt C, Dickmann M, Abdel-Hady EE, Mohamed HFM, Abdel-Hamed MO (2018) Crosslinked PVA/SSA proton exchange membranes: correlation between physiochemical properties and free volume determined by positron annihilation spectroscopy. Phys Chem Chem Phys 20:28287–28299. https://doi.org/10.1039/c8cp05301d

    Article  Google Scholar 

  50. 50.

    Strekopytov S, Exley C (2006) Thermal analyses of aluminium hydroxide and hydroxyaluminosilicates. Polyhedron 25:1707–1713. https://doi.org/10.1016/j.poly.2005.11.011

    Article  Google Scholar 

  51. 51.

    Yang H, Xu S, Jiang L, Dan Y (2012) Thermal decomposition behavior of poly (vinyl alcohol) with different hydroxyl content. J Macromol Sci Part B Phys 51:464–480. https://doi.org/10.1080/00222348.2011.597687

    Article  Google Scholar 

  52. 52.

    Chen I, Hwang SK, Chen S (1989) Chemical kinetics and reaction mechanism of thermal decomposition of aluminum hydroxide and magnesium hydroxide at high temperatures (973–1123 K). Ind Eng Chem Res 28:738–742. https://doi.org/10.1021/ie00090a015

    Article  Google Scholar 

  53. 53.

    Alhwaige AA, Herbert MM, Alhassan SM, Ishida H, Qutubuddin S, Schiraldi DA (2016) Laponite/multigraphene hybrid-reinforced poly(vinyl alcohol) aerogels. Polymer (Guildf) 91:180–186. https://doi.org/10.1016/j.polymer.2016.03.077

    Article  Google Scholar 

  54. 54.

    Wypych G (2016) Fillers—origin, chemical composition, properties, and morphology. In: Handbook of Fillers. Elsevier, pp. 13–266. https://doi.org/https://doi.org/10.1016/b978-1-895198-91-1.50004-x

  55. 55.

    Finlay KA, Gawryla MD, Schiraldi DA (2015) Effects of fiber reinforcement on clay aerogel composites. Materials (Basel) 8:5440–5451. https://doi.org/10.3390/ma8085258

    Article  Google Scholar 

  56. 56.

    Zheng Q, Cai Z, Gong S (2014) Green synthesis of polyvinyl alcohol (PVA)-cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. J Mater Chem A 2:3110–3118. https://doi.org/10.1039/c3ta14642a

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Temasek Laboratories @ NUS, R-265-000-682-720 (Mapletree Gift), R-265-000-682-114 (MOE Tier 1 FRC), R-265-000-682-133 (ODPRT) and R-265-000-682-731 (ME) for the financial support for the financial support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hai M. Duong.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sp, T.S., Nguyen, P.T.T., Do, N.H.N. et al. Advanced fabrication and multi-properties of aluminium hydroxide aerogels from aluminium wastes. J Mater Cycles Waste Manag 23, 885–894 (2021). https://doi.org/10.1007/s10163-020-01169-1

Download citation

Keywords

  • Aluminium hydroxide aerogel
  • Aluminium waste
  • Electrical conductivity
  • Thermal insulation