Skip to main content
Log in

Inventory of twenty-six combustible wastes as sources of potentially toxic elements: B, Cr, Cu, Zn, As, Sb, Ba, and Pb

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Municipal solid waste (MSW) is converted to various materials through treatment processes, which in turn distributes potentially toxic elements (PTEs) to recyclable materials. This study is focused on establishing an inventory of combustible wastes with the objective of identifying specific sources of PTEs (B, Cr, Cu, Zn, As, Sb, Ba, and Pb). The combustible wastes were classified into 26 components by the criterion, which can be conveniently identified by the public. Each component of the combustible wastes was ignited at 450 °C, to reduce organic matters and increase the proportional content of the target PTE, before undergoing inductively coupled plasma analysis. The inventory of PTE contents in the waste components was developed from the ash and the ignition loss of each component. The contribution of waste components to the total amount of PTEs was estimated based on the element content and the proportion in waste. Through this series of processes, specific sources of waste components containing PTEs were presented. This work can contribute to the reduction of toxicity of MSW and incineration residues that are to be recycled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Sakanakura H, Yui K, Kuramochi H, et al (2016) Concentration and distribution of 56 elements in residues from stoker-type municipal solid waste incineration. 9th International Conference on Combustion, Incineration/Pyrolysis, Emission and Climate Change (9th i-CIPEC), Kyoto, Japan

  2. Wei Y, Li J, Shi D et al (2017) Environmental challenges impeding the composting of biodegradable municipal solid waste: a critical review. Resour Conserv Recycl 122:51–65. https://doi.org/10.1016/j.resconrec.2017.01.024

    Article  Google Scholar 

  3. Iacovidou E, Hahladakis J, Deans I et al (2018) Technical properties of biomass and solid recovered fuel (SRF) co-fired with coal: impact on multi-dimensional resource recovery value. Waste Manag 73:535–545. https://doi.org/10.1016/j.wasman.2017.07.001

    Article  Google Scholar 

  4. Yi S, Jang Y-C (2018) Life cycle assessment of solid refuse fuel production from MSW in Korea. J Mater Cycles Waste Manag 20:19–42

    Article  Google Scholar 

  5. Keulen A, van Zomeren A, Harpe P et al (2016) High performance of treated and washed MSWI bottom ash granulates as natural aggregate replacement within earth-moist concrete. Waste Manag 49:83–95

    Article  Google Scholar 

  6. Joseph MA, Snellings R, Van den Heede P et al (2018) The use of municipal solid waste incineration Ash in various building materials: a Belgian point of view. Mater. 11:141

    Article  Google Scholar 

  7. Sakita S, Nishimura K (2016) Physical containment of municipal solid waste incineration bottom ash by accelerated carbonation. J Mater Cycles Waste Manag 18:687–694. https://doi.org/10.1007/s10163-015-0369-8

    Article  Google Scholar 

  8. Holm O, Wollik E, Johanna Bley T (2018) Recovery of copper from small grain size fractions of municipal solid waste incineration bottom ash by means of density separation. Int J Sustain Eng 11:250–260

    Google Scholar 

  9. Syc M, Simon F-G, Biganzoli L et al (2018) Resource recovery from incineration bottom ash: Basics, concepts, principles. In: Holm O, Thome-Kozmiensky E (eds) Removal, treatment and utilisation of waste incineration bottom ash. Thomé-Kozmiensky Verlag GmbH, Neuruppin, pp 1–10

    Google Scholar 

  10. Yang N, Damgaard A, Scheutz C et al (2018) A comparison of chemical MSW compositional data between China and Denmark. J Environ Sci 74:1–10

    Article  Google Scholar 

  11. Areeprasert C, Kaharn J, Inseemeesak B et al (2018) A comparative study on characteristic of locally source-separated and mixed MSW in Bangkok with possibility of material recycling. J Mater Cycles Waste Manag 20:302–313. https://doi.org/10.1007/s10163-017-0583-7

    Article  Google Scholar 

  12. Jung CH, Matsuto T, Tanaka N, Okada T (2004) Metal distribution in incineration residues of municipal solid waste (MSW) in Japan. Waste Manag 24:381–391. https://doi.org/10.1016/S0956-053X(03)00137-5

    Article  Google Scholar 

  13. Helsen L, Bosmans A (2010) Waste-to-Energy through thermochemical processes: matching waste with process. In: Proceedings of the 1st International Academic Symposium on Enhanced Landfill Mining. Haletra; Houthalen-Helchteren, pp 133–180

  14. Ménard Y, Asthana A, Patisson F et al (2006) Thermodynamic study of heavy metals behaviour during municipal waste incineration. Process Saf Environ Prot 84:290–296

    Article  Google Scholar 

  15. Riber C, Fredriksen GS, Christensen TH (2005) Heavy metal content of combustible municipal solid waste in Denmark. Waste Manag Res 23:126–132. https://doi.org/10.1177/0734242X05051195

    Article  Google Scholar 

  16. Morf LS, Gloor R, Haag O et al (2013) Precious metals and rare earth elements in municipal solid waste—sources and fate in a Swiss incineration plant. Waste Manag 33:634–644. https://doi.org/10.1016/j.wasman.2012.09.010

    Article  Google Scholar 

  17. Belevi H, Langmeier M (2000) Factors determining the element behavior in municipal solid waste incinerators. 2. Laboratory experiments. Environ Sci Technol 34:2507–2512

    Article  Google Scholar 

  18. Astrup T, Riber C, Pedersen AJ (2011) Incinerator performance: effects of changes in waste input and furnace operation on air emissions and residues. Waste Manag Res 29:S57–S68. https://doi.org/10.1177/0734242X11419893

    Article  Google Scholar 

  19. Law SL, Gordon GE (1979) Sources of metals in municipal incinerator emissions. Environ Sci Technol 13:432–438

    Article  Google Scholar 

  20. Zhang H, He P-J, Shao L-M (2008) Flow analysis of heavy metals in MSW incinerators for investigating contamination of hazardous components. Environ Sci Technol 42:6211–6217. https://doi.org/10.1021/es800548w

    Article  Google Scholar 

  21. Bode P, De Bruin M, Aalbers TG, Meyer PJ (1990) Plastics from household waste as a source of heavy metal pollution. In: Zeisler R, Guinn VP (eds) Nuclear analytical methods in the life sciences. Humana Press, Totowa, pp 377–383

    Chapter  Google Scholar 

  22. Naghii MR, Wall PM, Samman S (1996) The boron content of selected foods and the estimation of its daily intake among free-living subjects. J Am Coll Nutr 15:614–619. https://doi.org/10.1080/07315724.1996.10718638

    Article  Google Scholar 

  23. Garcı́a AJ, Esteban MB, Márquez MC, Ramos P (2005) Biodegradable municipal solid waste: characterization and potential use as animal feedstuffs. Waste Manag 25:780–787. https://doi.org/10.1016/j.wasman.2005.01.006

    Article  Google Scholar 

  24. Long Y-Y, Shen D-S, Wang H-T et al (2011) Heavy metal source analysis in municipal solid waste (MSW): case study on Cu and Zn. J Hazard Mater 186:1082–1087. https://doi.org/10.1016/j.jhazmat.2010.11.106

    Article  Google Scholar 

  25. Nakamura K, Kinoshita S, Takatsuki H (1996) The origin and behavior of lead, cadmium and antimony in MSW incinerator. Waste Manag 16:509–517

    Article  Google Scholar 

  26. Hasselriis F, Licata A (1996) Analysis of heavy metal emission data from municipal waste combustion. J Hazard Mater 47:77–102. https://doi.org/10.1016/0304-3894(95)00107-7

    Article  Google Scholar 

  27. Sakanakura H, Back S, Naruoka T (2019) Contribution of Each Combustible Waste to the Element Content of MSW Incineration Residue. IOP Conf Ser Earth Environ Sci 265:12003. https://doi.org/10.1088/1755-1315/265/1/012003

    Article  Google Scholar 

  28. MOEJ (2018) Instruction on guidance for general waste disposal (in Japanese)

  29. Heiri O, Lotter AF, Lemcke G (2001) Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol 25:101–110

    Article  Google Scholar 

  30. Matthiessen MK, Larney FJ, Brent Selinger L, Olson AF (2005) Influence of loss-on-ignition temperature and heating time on ash content of compost and manure. Commun Soil Sci Plant Anal 36:2561–2573

    Article  Google Scholar 

  31. Donkin MJ (1991) Loss-on-ignition as an estimator of soil organic carbon in a-horizon forestry soils. Commun Soil Sci Plant Anal 22:233–241. https://doi.org/10.1080/00103629109368411

    Article  Google Scholar 

  32. Sun CL, Koziński JA (2000) Ignition behaviour of pulp and paper combustible wastes. Fuel 79:1587–1593

    Article  Google Scholar 

  33. Yesiller N, Hanson JL, Cox JT, Noce DE (2014) Determination of specific gravity of municipal solid waste. Waste Manag 34:848–858

    Article  Google Scholar 

  34. Huber F, Blasenbauer D, Aschenbrenner P, Fellner J (2019) Chemical composition and leachability of differently sized material fractions of municipal solid waste incineration bottom ash. Waste Manag 95:593–603

    Article  Google Scholar 

  35. Quina MJ, Bordado JC, Quinta-Ferreira RM (2008) Treatment and use of air pollution control residues from MSW incineration: an overview. Waste Manag 28:2097–2121

    Article  Google Scholar 

  36. Oguchi M, Sakanakura H, Terazono A, Takigami H (2012) Fate of metals contained in waste electrical and electronic equipment in a municipal waste treatment process. Waste Manag 32:96–103. https://doi.org/10.1016/J.WASMAN.2011.09.012

    Article  Google Scholar 

  37. Kida A, Miyazaki T, Kuramochi H (2011) Analytical methods for elements including precious metals and rare metals in electric and electronic products. 22:19–27. https://doi.org/10.3985/mcwmr.22.19

    Article  Google Scholar 

  38. Korkmaz A, Yanik J, Brebu M, Vasile C (2009) Pyrolysis of the tetra pak. Waste Manag 29:2836–2841. https://doi.org/10.1016/j.wasman.2009.07.008

    Article  Google Scholar 

  39. Czajczyńska D, Anguilano L, Ghazal H et al (2017) Potential of pyrolysis processes in the waste management sector. Therm Sci Eng Prog 3:171–197

    Article  Google Scholar 

  40. Blevins DG, Lukaszewski KM (1994) Proposed physiologic functions of boron in plants pertinent to animal and human metabolism. Environ Health Perspect 102:31–33

    Google Scholar 

  41. Martens DC, Westermann DT (1991) Fertilizer application for correcting micronutrient deficiencies. Micronutr Agric. 4:549–592

    Google Scholar 

  42. Abat M, Degryse F, Baird R, McLaughlin MJ (2015) Boron phosphates (BPO4) as a seedling-safe boron fertilizer source. Plant Soil 391:153–160. https://doi.org/10.1007/s11104-015-2424-6

    Article  Google Scholar 

  43. Fiume MM, Bergfeld WF, Belsito DV et al (2015) Safety assessment of Boron Nitride as used in cosmetics. Int J Toxicol 34:53S–60S. https://doi.org/10.1177/1091581815617793

    Article  Google Scholar 

  44. Wilkie CA, Morgan AB (2009) Fire Retardancy of Polymeric Materials, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  45. Shahid M, Shamshad S, Rafiq M et al (2017) Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: a review. Chemosphere 178:513–533

    Article  Google Scholar 

  46. Allam OG (2011) Improving functional characteristics of wool and some synthetic fibres. Open J Org Polym Mater 3:8–19

    Article  MathSciNet  Google Scholar 

  47. Madhav S, Ahamad A, Singh P, Mishra PK (2018) A review of textile industry: wet processing, environmental impacts, and effluent treatment methods. Environ Qual Manag 27:31–41

    Article  Google Scholar 

  48. Sungur Ş, Gülmez F (2015) Determination of metal contents of various fibers used in textile industry by MP-AES. J Spectrosc 2015:1–5. https://doi.org/10.1155/2015/640271

    Article  Google Scholar 

  49. Moezzi A, McDonagh AM, Cortie MB (2012) Zinc oxide particles: synthesis, properties and applications. Chem Eng J 185:1–22

    Article  Google Scholar 

  50. Nzihou A, Stanmore B (2013) The fate of heavy metals during combustion and gasification of contaminated biomass—a brief review. J Hazard Mater 256:56–66

    Article  Google Scholar 

  51. Wang T, Yang Q, Wang Y et al (2020) Arsenic release and transformation in co-combustion of biomass and coal: effect of mineral elements and volatile matter in biomass. Bioresour Technol 297:122388. https://doi.org/10.1016/j.biortech.2019.122388

    Article  Google Scholar 

  52. Hasegawa H, Rahman MA, Matsuda T et al (2009) Effect of eutrophication on the distribution of arsenic species in eutrophic and mesotrophic lakes. Sci Total Environ 407:1418–1425

    Article  Google Scholar 

  53. Tangahu BV, Abdullah S, Rozaimah S, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:1–31. https://doi.org/10.1155/2011/939161

    Article  Google Scholar 

  54. Abbas G, Murtaza B, Bibi I et al (2018) Arsenic uptake, toxicity, detoxification, and speciation in plants: physiological, biochemical, and molecular aspects. Int J Environ Res Public Health 15:59

    Article  Google Scholar 

  55. Van Oyen A, Kühn S, van Franeker JA, Ortlieb M, Egelkraut-Holtus M (2016) Plastic and restricted heavy metals. In: MICRO Conference fate and impact of microplastics in marine ecosystems, Lanzarote, Spain

  56. Rovira J, Nadal M, Schuhmacher M, Domingo JL (2015) Human exposure to trace elements through the skin by direct contact with clothing: risk assessment. Environ Res 140:308–316

    Article  Google Scholar 

  57. Oskarsson A, Reeves AL (2007) CHAPTER 20 - Barium. In: Third E (ed) Nordberg GF, Fowler BA, Nordberg M, Friberg LTBT-H on the T of M. Academic Press, Burlington, pp 407–414

    Google Scholar 

  58. Kresse R, Baudis U, Jäger P, Riechers HH, Wagner H, Winkler J, Wolf HU (2000) Barium and barium compounds. Wiley, VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  59. Pivnenko K, Eriksson E, Astrup TF (2015) Waste paper for recycling: overview and identification of potentially critical substances. Waste Manag 45:134–142

    Article  Google Scholar 

  60. Masternak-Janus A, Rybaczewska-Błażejowska M (2015) Life cycle analysis of tissue paper manufacturing from virgin pulp or recycled waste paper. Manag Prod Eng Rev 6:47–54

    Google Scholar 

  61. Tucker P, Douglas P, Durrant A, Hursthouse AS (2000) Heavy metal content of newspapers: longitudinal trends. Environ Manag Heal 11:47–66

    Article  Google Scholar 

  62. Weisel C, Demak M, Marcus S, Goldstein BD (1991) Soft plastic bread packaging: lead content and reuse by families. Am J Public Health 81:756–758

    Article  Google Scholar 

  63. European Union (1994) European Parliament and Council Directive 94/62/EC of 20 December 1994 on packaging and packaging waste

  64. Helsen L, Van den Bulck E (2005) Review of disposal technologies for chromated copper arsenate (CCA) treated wood waste, with detailed analyses of thermochemical conversion processes. Environ Pollut 134:301–314. https://doi.org/10.1016/j.envpol.2004.07.025

    Article  Google Scholar 

  65. Augustsson A, Sörme L, Karlsson A, Amneklev J (2017) Persistent Hazardous Waste and the Quest Toward a Circular Economy: the Example of Arsenic in Chromated Copper Arsenate-Treated Wood. J Ind Ecol 21:689–699

    Article  Google Scholar 

  66. Hata T, Bronsveld P, Kakitani T, Meier D, Imamura Y (2004) Environmental impact of CCA-treated wood in Japan. In: Environmental impacts of preservative-treated wood, Orlando, USA

  67. Kartal SN, Imamura Y (2005) Removal of copper, chromium, and arsenic from CCA-treated wood onto chitin and chitosan. Bioresour Technol 96:389–392. https://doi.org/10.1016/j.biortech.2004.03.004

    Article  Google Scholar 

  68. Clausen C (2004) Improving the two-step remediation process for CCA-treated wood: Part I. Evaluating oxalic acid extraction. Waste Manag 24:401–405. https://doi.org/10.1016/j.wasman.2003.11.008

    Article  Google Scholar 

  69. Nico PS, Fendorf SE, Lowney YW et al (2004) Chemical structure of arsenic and chromium in CCA-treated wood: implications of environmental weathering. Environ Sci Technol 38:5253–5260

    Article  Google Scholar 

  70. Nasrullah M, Vainikka P, Hannula J et al (2015) Mass, energy and material balances of SRF production process. Part 3: solid recovered fuel produced from municipal solid waste. Waste Manag Res 33:146–156. https://doi.org/10.1177/0734242X14563375

    Article  Google Scholar 

  71. Rotter VS, Kost T, Winkler J, Bilitewski B (2004) Material flow analysis of RDF-production processes. Waste Manag 24:1005–1021. https://doi.org/10.1016/j.wasman.2004.07.015

    Article  Google Scholar 

  72. International Solid Waste Association (2015) Bottom ash from WTE plants: metal recovery and utilization. ISWA Report

  73. Šyc M, Simon FG, Hykš J et al (2020) Metal recovery from incineration bottom ash: state-of-the-art and recent developments. J Hazard Mater 393:122433. https://doi.org/10.1016/j.jhazmat.2020.122433

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by the Environmental Research and Technology Development Fund (3-1804) of the Environmental Restoration and Conservation Agency and Japan Waste Research Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Seungki Back: Writing original draft; Methodology; Data curation and validation; Visualization; Review and editing of the manuscript; Supervision. Hirofumi Sakanakura: Conceptualization; Data validation; Resources; Review and editing of the manuscript.

Corresponding author

Correspondence to Seungki Back.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 231 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Back, S., Sakanakura, H. Inventory of twenty-six combustible wastes as sources of potentially toxic elements: B, Cr, Cu, Zn, As, Sb, Ba, and Pb. J Mater Cycles Waste Manag 23, 664–675 (2021). https://doi.org/10.1007/s10163-020-01155-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-020-01155-7

Keywords

Navigation