Skip to main content
Log in

Natural rubber composites with Grits waste from cellulose industry

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Tons of industrial residues are daily generated and require management strategies to be correctly disposed or recycled. Therefore, the reuse of organic and industrial wastes as fillers in polymeric composites has gained attention as a new research field. Here, it is demonstrated for the first time the use of Grits waste as filler in natural rubber composites to reuse the eucalyptus kraft pulp residue as well as to decrease the final cost of rubber products by totally or partially replacing the commercial fillers. Untreated waste was employed without pH correction and any coupling agent, while the treated waste had a pH correction and treatment with Dodigen 1611 which is a coupling agent formed by quaternary ammonium salt and increase the residue dispersion or linked it into the polymeric matrix. The pH correction was applied to avoid interference in the vulcanization reaction and it was performed with acetic acid 50% v/v until waste neutralization. Composites with 20 phr of untreated Grits have shown an increase, around 7%, in the stress values when compared to the unfilled natural rubber. However, composites with 20 phr of treated Grits had an increase of 20%. Abrasion loss results show that abrasion resistance tended to decrease when untreated and treated Grits contents are higher than10 phr. An alternative application for the Grits waste composites was in the production of slippers. The produced composites were able to be processed, cut, and molded in an industry of shoes and slippers. The slippers could be well implemented as the composite flexibility was preserved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Klemm D, Philipp B, Heinze T, Heinze U, Wagenknecht W (1998) Comprehensive cellulose chemistry, Volume 1: Fundamentals and analytical methods. Wiley, Weinheim

    Book  Google Scholar 

  2. Maleki SS, Mohammadi K, Ji K (2016) Characterization of cellulose synthesis in plant cells. Sci World J 2016:1–9. https://doi.org/10.1155/2016/8641373

    Article  Google Scholar 

  3. Bacarin GB, Cabrera FC, Silva MR, Job AE (2017) The distribution of lignin and xylan in the inner and surface layers of the fiber from eucalyptus kraft pulp and its effects on oxygen delignification. Mater. Res. 20:945–950. https://doi.org/10.1590/1980-5373-mr-2016-0687

    Article  Google Scholar 

  4. Zong Y, Zheng T, Martins P, Lanceros-Mendez S, Yue Z, Higgins MJ (2017) Cellulose-based magnetoeletric composites. Nature 8:38. https://doi.org/10.1038/s41467-017-00034-4

    Article  Google Scholar 

  5. Nakai Y, Yoshikawa M (2015) Cellulose as a membrane material for optical resolution. Polym J 47:334–339. https://doi.org/10.1038/pj.2014.106

    Article  Google Scholar 

  6. Tan BK, Ching YC, Poh SC, Chuah AL (2015) A review of natural fiber reinforced poly (vinyl alcohol) based composites: application and opportunity polymers. Polymers 7:2205–2222. https://doi.org/10.3390/polym7111509

    Article  Google Scholar 

  7. Wang J, Gao C, Zhang Y, Wan Y (2010) Preparation and in vitro characterization of BC/PVA hydrogel composite for its potential use as artificial cornea biomaterial. Mater Sci Eng C 30:214–218. https://doi.org/10.1016/j.msec.2009.10.006

    Article  Google Scholar 

  8. Wu J, Lin LY (2017) Ultrathin (%3c1 µm) substrate-free flexible photodetector on quantum dot-nanocellulose paper. Sci Rep 7:1–7. https://doi.org/10.1038/srep43898

    Article  Google Scholar 

  9. Du X, Zhang Z, Liu W, Yulin D (2017) Nanocellulose-based conductive materials and their emerging applications in energy devices—a review. Nano Energy 35:299–320. https://doi.org/10.1016/j.nanoen.2017.04.001

    Article  Google Scholar 

  10. Tran M, Wang C (2014) Semi-solid materials for controlled release drug formulation: current status and future prospects. Front Chem Sci Eng 8:225–232. https://doi.org/10.1007/s11705-014-1429-7

    Article  Google Scholar 

  11. Ilevbare GA, Liu HY, Edgar KJ, Taylor LS (2013) Impact of polymers on crystal growth rate of structurally diverse compounds from aqueous solution. Mol Pharm 10:2381–2393. https://doi.org/10.1021/mp400029v

    Article  Google Scholar 

  12. Weng L, Rostamzadeh P, Nooryshokry N, Le HC, Golzarian J (2013) In vitro and in vivo evaluation of biodegradable embolic microspheres with tunable anticancer drug release. Acta Biomater 9:6823–6833. https://doi.org/10.1016/j.actbio.2013.02.017

    Article  Google Scholar 

  13. Capadona JR, Van Den Berg O, Capadona LA et al (2007) A versatile approach for the processing of polymer nanocomposites with self-assembled nanofibre templates. Nat Nanotechnol 2:765–769. https://doi.org/10.1038/nnano.2007.379

    Article  Google Scholar 

  14. Capadona JR, Shanmuganathan K, Tyler DJ, Rowan SJ, Christof W (2008) Stimuli-responsive polymer nanocomposites inspired by the sea cucumber dermis. Science 319:1370–1374. https://doi.org/10.1126/science.1153307

    Article  Google Scholar 

  15. Jorfi M, Foster EJ (2015) Recent advances in nanocellulose for biomedical applications. J Appl Polym Sci 132:1–19. https://doi.org/10.1002/app.41719

    Article  Google Scholar 

  16. IBÁ. Indústria Brasileira de Árvores. Estatísticas da indústria brasileira de árvores (Ibá). https://iba.org/pt/dados-e-estatisticas/cenarios-iba. Accessed Jan 2019

  17. Demir I, Serhat BM, Orhan M (2005) Utilization of kraft pulp production residues in clay brick production. Build Environ 40:1533–1537. https://doi.org/10.1016/j.buildenv.2004.11.021

    Article  Google Scholar 

  18. Modolo R, Benta A, Ferreira VM, Machado LM (2010) Pulp and paper plant wastes valorization in bituminous mixes. Waste Manage 30:685–696. https://doi.org/10.1016/j.wasman.2009.11.005

    Article  Google Scholar 

  19. Bajpai P (2015) Generation of Waste in Pulp and Paper Mills. Management of pulp and paper mill waster. Springer International Publishing, Switzerland, pp 9–15

    Google Scholar 

  20. Martins FM, Munhoz J, Ferracin LC, Cunha CJ (2007) Mineral phases of green liquor dregs, slaker Grits, lime mud and wood ash of a kraft pulp and paper mill. J Hazard Mater 147:610–617. https://doi.org/10.1016/j.jhazmat.2007.01.057

    Article  Google Scholar 

  21. Cabral F, Ribeiro HM, Hilário L, Machado L, Vasconcelos E (2008) Use of pulp mill inorganic wastes as alternative liming materials. Biores Technol 99:8294–8298. https://doi.org/10.1016/j.biortech.2008.03.001

    Article  Google Scholar 

  22. Associação Brasileira de Normas Técnicas (2004) NBR 10004 Resíduos sólidos—Classificação. Rio de Janeiro

  23. Nurmesniemi H (2005) Utilization of wastes at Stora Enso Veitsiluoto Mills. In: Pongrácz E (ed) Proceedings of the RESOPT closing seminar ‘Waste minimization and utilization in Oulu region: drivers and constraints’. Oulu University Press, Oulu, pp 145–149

  24. Siqueira FB, Holanda JNF (2013) Reuse of Grits waste for the production of soil-cement bricks. J Environ Manage 131C:1–6. https://doi.org/10.1016/j.jenvman.2013.09.040

    Article  Google Scholar 

  25. Sarkar R, Kurar R, Gupta AK, Mudgal A, Gupta V (2017) Use of paper mill waste for brick making cogent. Engineering 4:1405768

    Google Scholar 

  26. Garcia ML, Coutinho JS (2009) Grits and Dregs for cement replacement—preliminary studies. 11th International conference on non-conventional material and technologies. Bath, United Kingston, pp 1–12

    Google Scholar 

  27. Farage R, Santos EN (2016) Use of alkaline by-products (Grits, dregs and lime mud) generated in kraft pulping process as intermediate layer of sanitary landfill. Conference: Eurasia Waste Management Symposium

  28. Xu T, Jia Z, Wang S, Chen Y, Luo Y, Jia D, Peng Z (2017) Self-crosslinkable epoxidized natural rubber–silica hybrids. J Appl Polym Sci 134:1–10. https://doi.org/10.1002/app.44605

    Article  Google Scholar 

  29. Roy K, Debnath SC, Bansod ND, Pongwisuthiruchte A, Wasanapiarnpong T, Potiyaraj P (2019) Possible use of gypsum waste from ceramics industry as semi-reinforcing filler in epoxidized natural rubber composites. J Mater Cycles Waste Manage. https://doi.org/10.1007/s10163-019-00939-w

    Article  Google Scholar 

  30. Sobhy MS, El-Nashar DE, Maziad NA (2003) Cure characteristics and physicomechanical properties of calcium carbonate reinforcement rubber composites. Egypt J Sol 26:241–257

    Google Scholar 

  31. Ibarra L, Alzorriz M (2003) Ionic elastomers based on carboxylated nitrile rubber and calcium oxide. J Appl Polym Sci 87:805–813. https://doi.org/10.1002/app.11468

    Article  Google Scholar 

  32. De Paiva FFG, de Maria VPK, Torres GB, Dognani G, Santos RJ, Cabrera FC, Job AE (2019) Sugarcane bagasse fiber as semi-reinforcement filler in natural rubber composite sandals. J Mater Cycles Waste Manage 21:326–335. https://doi.org/10.1007/s10163-018-0801-y

    Article  Google Scholar 

  33. Dimzoski B, Bogoeva G, Gentile G, Avella M, Grozdanov A (2009) Polypropylene-based eco-composites filled with agricultural rice hulls waste. Chem Biochem Eng 23:225–230

    Google Scholar 

  34. Pongdong W, Kummerlöwe C, Vennemann N, Thitithammawong A, Nakason C (2016) Property correlations for dynamically cured rice husk ash filled epoxidized natural rubber/thermoplastic polyurethane blends: influencies of RHA loading. Polym Test 53:245–256

    Article  Google Scholar 

  35. Güngör A, Akbay IK, Özdemir T (2018) Waste walnut shell as an alternative bio-based filler for the EPDM: mechanical, thermal, and kinetic studies. J Mater Cycles Waste Manage. https://doi.org/10.1007/s10163-018-0778-6

    Article  Google Scholar 

  36. Intiya W, Thepsuwan U, Sirisinha C, Sae-Oui P (2016) Possible use of sludge ash as filler in natural rubber. J Mater Cycles Waste Manage 19(2):774–781. https://doi.org/10.1007/s10163-016-0480-5

    Article  Google Scholar 

  37. Santos RJ, Agostini DLS, Cabrera FC et al (2014) Sugarcane bagasse ash: new filler to natural rubber composite. Polímeros 24:646–653. https://doi.org/10.1590/0104-1428.1547

    Article  Google Scholar 

  38. Santos RJ, Agostini DLS, Cabrera FC et al (2015) Recycling leather waste: preparing and studying on the microstructure, mechanical, and rheological properties of leather waste/rubber composite. Polymer Compos 36:2275–2281. https://doi.org/10.1002/pc.23140

    Article  Google Scholar 

  39. Şaşmaz S, Karaağaç B, Uyanık N (2019) Utilization of chrome-tanned leather wastes in natural rubber and styrene-butadiene rubber blends. J Mater Cycles Waste Manag 21:166. https://doi.org/10.1007/s10163-018-0775-9

    Article  Google Scholar 

  40. Morrison R, Boyd R (1996) Química Orgânica. Lisboa, Fund. Calouste Gulbenkian, p 960

    Google Scholar 

  41. Seki Y (2009) Innovative multifunctional siloxane treatment of jute fiber surface and its effects on the mechanical properties of jute/thermoset composites. Mater Sci Eng A 508:247–252. https://doi.org/10.1016/j.msea.2009.01.043

    Article  Google Scholar 

  42. Barbosa R, Araújo EM, Oliveira AD, Melo TJA (2006) Efeito de sais quaternários de amônio na organofilização de uma argila Bentonita nacional. Cerâmica 52:264–268. https://doi.org/10.1590/S0366-69132006000400009

    Article  Google Scholar 

  43. ASTM D 2084:2001. Standard Test method for rubber property-vulcanization using oscillating disk cure meter

  44. ASTM D 3182:2007. Standard practice for rubber-materials, equipment, and procedures for mixing standard compounds and preparing standard vulcanized sheets

  45. ASTM D 412:2013. Test methods for vulcanized rubber and thermoplastic elastomers—tension

  46. ASTM D 5963:2010. Test method for rubber property—abrasion resistance (Rotary Drum Abrader).

  47. ASTM D 2240:2010. Test Method for rubber property—durometer hardness. ASTM American Society for Testing and Materials.

  48. Flory PJ, Rehner J (1943) Statistical mechanics of cross-linked polymer networks. II. Swelling. J Chem Phys 11:521–526. https://doi.org/10.1063/1.1723792

    Article  Google Scholar 

  49. Vieyres A, Aparicio RP, Albouy PA, Sanseau O et al (2013) Sulfur-cured natural rubber elastomer networks: correlating cross-link density, chain orientation, and mechanical response by combined techniques. Macromolecules 46:889–899. https://doi.org/10.1021/ma302563z

    Article  Google Scholar 

  50. Araújo SS, Paiva GP, Carvalho LH, Silva SML (2004) Influência de tipo de argila organofílica na estabilidade térmica dos nanocompósitos a base de PP. In: Congresso Brasileiro de Engenharia e Ciência dos Materiais, 16º CEBCiMat, Porto Alegre

  51. Awad WH, Gilman JW, Nyden M, Harris RH, Sutto TE et al (2004) Thermal degradation studies of alkil-imidazolium salts and their application in nanocomposites. Thermochim Acta 409:3–11. https://doi.org/10.1016/S0040-6031(03)00334-4

    Article  Google Scholar 

  52. Diaz FRV (1999) Obtenção de argilas organofílicas partindo-se de argilas esmectíticas e do sal quaternário de amônio. In: 43º Congresso Brasileiro de Cerâmica, Florianópolis. Anais. [S.l.]: Associação Brasileira de Cerâmica

  53. Escócio VA, Martins AF, Visconte LLY, Nunes RCR, Oliveira MG (2008) Rheology and processability of natural rubber composites with mica. Int J Polym Mater Polym Biomater 57:374–382

    Article  Google Scholar 

  54. Wongsorat W, Suppakarn N, Jarukumjorn K (2011) Influence of filler types on mechanical properties and cure characteristics of natural rubber composites. Advanced Materials, Research Online: 2011-06-30 ISSN: 1662–8985, 264: 646–651. https://doi.org/10.4028/www.scientific.net/AMR.264-265.646

  55. Peter R, Sreelekshmi RV, Menon ARR (2018) Cetyltrimethyl ammonium bromide modified kaolin as a reinforcing filler for natural rubber. J Polym Environ 26:39–47

    Article  Google Scholar 

  56. Sednicková M, Moskocá DJ, Janigová I, Kronek J et al (2017) Properties of natural rubber composites with structurally different clay intercalable surfactants. J Polym Res 24:105–116. https://doi.org/10.1007/s110965-017-1261-0

    Article  Google Scholar 

  57. Duchacek V, Kuta A, Pribyl P (1993) Efficiency of metal activators of accelerated sulfur vulcanization. J Appl Polym Sci 47:743–750. https://doi.org/10.1002/app.1993.070470418

    Article  Google Scholar 

  58. Hundiwale G, Kapadi UR, Desai MC, Bidkar SH (2002) Mechanical properties of natural rubber filled with flyash. J Appl Polym Sci 85:995–1001. https://doi.org/10.1002/app.10465

    Article  Google Scholar 

  59. Gent AN, Hartwell JA, Lee G (2003) Effect of carbon black on crosslinking. Rubber Chem Technol 76:517–532. https://doi.org/10.5254/1.3547758

    Article  Google Scholar 

  60. Kiss A, Fekete E, Pukanszky B (2007) Aggregation of CaCO3 particles in PP composites: effect of surface coating. Compos Sci Technol 67:1574–1583. https://doi.org/10.1016/j.compscitech.2006.07.010

    Article  Google Scholar 

  61. Rudolph N, Osswald TA (2015) Polymer rheology: fundamentals and applications. Hanser Publications

  62. Bigg DM (2004) Mechanical properties of particulate filled polymers. Polym Compos 8:115–122. https://doi.org/10.1002/pc.750080208

    Article  Google Scholar 

  63. Iozzi MA, Martins MA, Matoso LHC (2004) Properties of nitrile rubber, sisal fiber and calcium carbonate hybrid composites. Polímeros 14:93–98. https://doi.org/10.1590/S0104-14282004000200012

    Article  Google Scholar 

  64. Idrus S, Ismail H, Palaniandy S (2011) Study of the effect of different shapes of ultrafine silica as fillers in natural rubber compounds. Polym Testing 30:251–259. https://doi.org/10.1016/j.polymertesting.2010.10.002

    Article  Google Scholar 

  65. Callister JR, William D (2015) Materials Science and Engineering: An Introduction, 9th edn. LTC, Rio de Janeiro, p 370

    Google Scholar 

  66. Innocentini-Mei LH, Mariani PDSC (2005) Visão Geral sobre Polímeros ou Plásticos Ambientalmente Degradáveis. Campinas, Unicamp, p 41p

    Google Scholar 

  67. Schropfer SB, Bottene MK, Bianchin L, Robinson LC, Lima V, Jahno VD, Barud HS, Ribeiro SJL (2015) Biodegradation evaluation of bacterial cellulose, vegetable cellulose and poly (3-hydroxybutyrate) in soil. Polímeros 25:154–160. https://doi.org/10.1590/0104-1428.1712

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Amazonas Company for the partnership which cut and molded the slippers with our composites samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovani B. Bacarin.

Ethics declarations

Conflict of interest

The Authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bacarin, G.B., Dognani, G., dos Santos, R.J. et al. Natural rubber composites with Grits waste from cellulose industry. J Mater Cycles Waste Manag 22, 1126–1139 (2020). https://doi.org/10.1007/s10163-020-01011-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-020-01011-8

Keywords

Navigation