Skip to main content

Advertisement

Log in

Feasibility of energy generation by methane emissions from a landfill in southern Mexico

  • REGIONAL CASE STUDY
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

This research addresses the use of methane (CH4) for energy generation in a landfill located in Southern Mexico. To evaluate the feasibility of this renewable and sustainable energy project, a LandGEM model was used to estimate the CH4-emissions, the environmental benefits and the economic profitability. Taken together, results showed an average CH4-production of 2932 ft3/min, with a maximum CH4-generation flowrate of 4072 ft3/min (115.3 m3). Energy generation resulted in 32.396 million KW h/year with a hot water/steam production of 63.990 million BTU/year. The installed capital costs of a 15-years project were estimated in $9,034,907 USD; economic parameters showed a financial profitability with a net present value of $6,304,060 and an internal rate of return of 25%. The environmental benefits reported a total collection and destruction of CH4 at 9,824,469,979 ft3 (278,198,009.2 m3). The results obtained in this research can be used to conduct further studies to implement waste-to-energy technologies in Mexico and thus improve the sector of sustainable and renewable energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Andres R, Fielding D, Marland G, Boden T, Kumar N, Kearney A (1999) Carbon dioxide emissions from fossil-fuel use, 1751–1950. Tellus B 51:759–765. https://doi.org/10.3402/tellusb.v51i4.16483

    Article  Google Scholar 

  2. Owens S, Driffill L (2008) How to change attitudes and behaviours in the context of energy. Energy Policy 36:4412–4418. https://doi.org/10.1016/j.enpol.2008.09.031

    Article  Google Scholar 

  3. Månsson A (2014) Energy, conflict and war: towards a conceptual framework. Energy Res Soc Sci 4:106–116. https://doi.org/10.1016/j.erss.2014.10.004

    Article  Google Scholar 

  4. Shafiee S, Topal E (2009) When will fossil fuel reserves be diminished? Energy Policy 37:181–189. https://doi.org/10.1016/j.enpol.2008.08.016

    Article  Google Scholar 

  5. Inman M (2013) The true cost of fossil fuels. Sci Am 308:58–61. https://doi.org/10.1038/scientificamerican0413-58

    Article  Google Scholar 

  6. Klare M, (2013) Rushing for the Arctic’s riches. The New York Times, vol 7. https://www.nytimes.com/2013/12/08/opinion/sunday/rushing-for-the-arctics-riches.html. Accessed 5 Oct 2018

  7. Schmidt C (2011) Arctic oil drilling plans raise environmental health concerns. Environ Health Perspect 119:116–117. https://doi.org/10.1289/ehp.119-a116

    Article  Google Scholar 

  8. Alemán-Nava G, Casiano-Flores V, Cárdenas-Chávez D, Díaz-Chavez R, Scarlat N, Mahlknecht J, Dallemand J, Parra R (2014) Renewable energy research progress in Mexico: a review. Renew Sustain Energy Rev 32:140–153. https://doi.org/10.1016/j.rser.2014.01.004

    Article  Google Scholar 

  9. SIE (2019) Sistema de Información Energética. Secretaría de Energía, Mexico. http://sie.energia.gob.mx/. Accessed 9 Jan 2019

  10. Guerrero L, Maas G, Hogland W (2013) Solid waste management challenges for cities in developing countries. Waste Manag 33:220–232. https://doi.org/10.1016/j.wasman.2012.09.008

    Article  Google Scholar 

  11. Marshall R, Farahbakhsh K (2013) Systems approaches to integrated solid waste management in developing countries. Waste Manag 33:988–1003. https://doi.org/10.1016/j.wasman.2012.12.023

    Article  Google Scholar 

  12. Cancino-Solórzano Y, Paredes-Sánchez J, Gutiérrez-Trashorras A, Xiberta-Bernat J (2016) The development of renewable energy resources in the State of Veracruz, Mexico. Util Policy 39:1–4. https://doi.org/10.1016/j.jup.2016.01.001

    Article  Google Scholar 

  13. Schneider P, Lämmel A, Schmitt A, Nam N (2017) Current and future solid waste management system in Northern Viet Nam with focus on Ha Noi: climate change effects and landfill management. J Mater Cycles Waste Manag 19:1106–1116. https://doi.org/10.1007/s10163-016-0551-7

    Article  Google Scholar 

  14. Kaza S, Yao L, Bhada-Tata P, Van-Woerden F (2018) What a waste 2.0: a global snapshot of solid waste management to 2050. World Bank, Washington D.C.

    Book  Google Scholar 

  15. Gómez G, Meneses M, Ballinas L, Castells F (2009) Seasonal characterization of municipal solid waste (MSW) in the city of Chihuahua, Mexico. Waste Manag 29:2018–2024. https://doi.org/10.1016/j.wasman.2009.02.006

    Article  Google Scholar 

  16. Hernández B, Katsurada H, Alvarez M, García-Torres E, Sosa M (2013) Programa estatal para la prevención y gestión integral de los residuos sólidos urbanos y de manejo especial en el estado de Oaxaca. SEMAEDESO, Oaxaca

    Google Scholar 

  17. Nava-Uribe E, Juárez-López A, Sampedro-Rosas M (2015) Análisis comparativo de los residuos sólidos domésticos en localidades semirurales y rurales del estado de Guerrero, México. Tlamati 6:11–19. http://tlamati.uagro.mx/t63/t632.pdf. Accessed 20 Dec 2018

  18. FAO (2016) Pérdidas y desperdicios de alimentos en América Latina y el Caribe. Oficina Regional de la FAO para América Latina y el Caribe, Panamá

  19. Spokas K, Bogner J, Chanton J, Morcet M, Aran C, Graff C, Golvan Y, Hebe I (2006) Methane mass balance at three landfill sites: what is the efficiency of capture by gas collection systems? Waste Manag 26:516–525. https://doi.org/10.1016/j.wasman.2005.07.021

    Article  Google Scholar 

  20. IPCC (2006) 2006 IPCC guidelines for national greenhouse gas inventories. Institute for Global Environmental Strategies. https://www.ipcc-nggip.iges.or.jp/public/2006gl/. Accessed 1 Jan 2019

  21. Salomon K, Silva E (2009) Estimate of the electric energy generating potential for different sources of biogas in Brazil. Biomass Bioenergy 33:1101–1107. https://doi.org/10.1016/j.biombioe.2009.03.001

    Article  Google Scholar 

  22. Münster M, Meibom P (2011) Optimization of use of waste in the future energy system. Energy 36:1612–1622. https://doi.org/10.1016/j.energy.2010.12.070

    Article  Google Scholar 

  23. Brunner P, Rechberger H (2015) Waste to energy—key element for sustainable waste management. Waste Manag 37:3–12. https://doi.org/10.1016/j.wasman.2014.02.003

    Article  Google Scholar 

  24. Bolan N, Thangarajan R, Seshadri B, Jena U, Das K, Wang H, Naidu R (2013) Landfills as a biorefinery to produce biomass and capture biogas. Biores Technol 135:578–587. https://doi.org/10.1016/j.biortech.2012.08.135

    Article  Google Scholar 

  25. Zairi M, Aydi A, Dhia H (2014) Leachate generation and biogas energy recovery in the Jebel Chakir municipal solid waste landfill, Tunisia. J Mater Cycles Waste Manag 16:141–150. https://doi.org/10.1007/s10163-013-0164-3

    Article  Google Scholar 

  26. Chun S (2017) Mechanism of hydrogen sulfide generation from a composite waste landfill site: a case study of the ‘Sudokwon Landfill Site’, Korea. J Mater Cycles Waste Manag 19:443–452. https://doi.org/10.1007/s10163-015-0441-4

    Article  Google Scholar 

  27. Kumar S, Gaikwad S, Shekdar A, Kshirsagar P, Singh R (2004) Estimation method for national methane emission from solid waste landfills. Atmos Environ 38:3481–3487. https://doi.org/10.1016/j.atmosenv.2004.02.057

    Article  Google Scholar 

  28. Amini H, Reinhart D, Mackie K (2012) Determination of first-order landfill gas modeling parameters and uncertainties. Waste Manag 32:305–316. https://doi.org/10.1016/j.wasman.2011.09.021

    Article  Google Scholar 

  29. Scharff H, Jacobs J (2006) Applying guidance for methane emission estimation for landfills. Waste Manag 26:417–429. https://doi.org/10.1016/j.wasman.2005.11.015

    Article  Google Scholar 

  30. Krause M, Chickering G, Townsend T (2016) Translating landfill methane generation parameters among first-order decay models. J Air Waste Manag Assoc 66:1084–1097. https://doi.org/10.1080/10962247.2016.1200158

    Article  Google Scholar 

  31. EPA (2005) Landfill gas emissions model (LandGEM) version 3.02 user’s guide. Environmental Protection Agency, Washington D.C.

    Google Scholar 

  32. INEGI (2015) Número de habitantes: Oaxaca. Instituto Nacional de Estadística y Geografía. http://cuentame.inegi.org.mx/monografias/informacion/oax/poblacion/. Accessed 28 Nov 2018

  33. INEGI (2016) Conociendo Oaxaca. Insituto Nacional de Estadística y Geografía, Ciudad de México

    Google Scholar 

  34. Jo J, Kim W (2018) Market potential of biomethane as alternative transportation fuel in South Korea. J Mater Cycles Waste Manag 20:864–876. https://doi.org/10.1007/s10163-017-0646-9

    Article  Google Scholar 

  35. Fei F, Wen Z, De-Clercq D (2019) Spatio-temporal estimation of landfill gas energy potential: a case study in China. Renew Sustain Energy Rev 103:217–226. https://doi.org/10.1016/j.rser.2018.12.036

    Article  Google Scholar 

  36. Ghosh P, Shah G, Chandra R, Sahota S, Kumar H, Vijay V, Thakur I (2019) Assessment of methane emissions and energy recovery potential from the municipal solid waste landfills of Delhi, India. Biores Technol 272:611–615. https://doi.org/10.1016/j.biortech.2018.10.069

    Article  Google Scholar 

  37. Pillai J, Riverol C (2018) Estimation of gas emission and derived electrical power generation from landfills. Trinidad and Tobago as study case. Sustain Energy Technol Assess 29:139–146. https://doi.org/10.1016/j.seta.2018.08.004

    Article  Google Scholar 

  38. Asadollahfardi G, Asadi M, Youssefi M, Elyasi S, Mirmohammadi M (2015) Experimental and mathematical study on ammonia emission from Kahrizak landfill and composting plants, Tehran, Iran. J Mater Cycles Waste Manag 17:350–358. https://doi.org/10.1007/s10163-014-0242-1

    Article  Google Scholar 

  39. Mambeli R, Tiago G, Moreira A, Ferreira C, Fernandes M, Sales J, Sayuri H, Martins L, Silva I, Martuscelli E, Rocha J (2018) A potential of the biogas generating and energy recovering from municipal solid waste. Renew Energy Focus 25:4–16. https://doi.org/10.1016/j.ref.2018.02.001

    Article  Google Scholar 

  40. Calabro P (2009) Greenhouse gases emission from municipal waste management: the role of separate collection. Waste Manag 29:2178–2187. https://doi.org/10.1016/j.wasman.2009.02.011

    Article  Google Scholar 

  41. Escamilla-García P, Tavera-Cortés M, Pérez-Soto F (2019) Characterisation and calorific potential of waste generated in Mexico City for energy production. Int J Environ Waste Manag 23:123–140. https://doi.org/10.1504/IJEWM.2019.097611

    Article  Google Scholar 

  42. CONAGUA (2018) Reporte del Clima en México. Comisión Nacional del Agua Mexico. https://smn.cna.gob.mx/tools/DATA/Climatolog%C3%ADa/Diagn%C3%B3stico%20Atmosf%C3%A9rico/Reporte%20del%20Clima%20en%20M%C3%A9xico/RC-Diciembre17.pdf. Accessed 15 Nov 2018

  43. Mou Z, Scheutz C, Kjeldsen P (2015) Evaluating the methane generation rate constant (k value) of low-organic waste at Danish landfills. Waste Manag 35:170–176. https://doi.org/10.1016/j.wasman.2014.10.003

    Article  Google Scholar 

  44. Escamilla-García P (2019) Efficiency and reliability of theoretical models of biogas for landfills. LA GRANJA Revista de Ciencias de la Vida 29:33–44. https://doi.org/10.17163/lgr.n29.2019.03

    Article  Google Scholar 

  45. Papadias D, Ahmed S, Kumar R (2012) Fuel quality issues with biogas energy—an economic analysis for a stationary fuel cell system. Energy 44:257–277. https://doi.org/10.1016/j.energy.2012.06.031

    Article  Google Scholar 

  46. Elwell A, Elsayed N, Kuhn J, Joseph B (2018) Design and analysis of siloxanes removal by adsorption from landfill gas for waste-to-energy processes. Waste Manag 73:189–196. https://doi.org/10.1016/j.wasman.2017.12.021

    Article  Google Scholar 

  47. Secretariat of Environment and Natural Resources of Mexico (2016) Compromisos de mitigación y adaptación ante el cambio climático para el periodo 2020–2030. https://www.gob.mx/cms/uploads/attachment/file/162974/2015_indc_esp.pdf. Accessed 1 Feb 2019

  48. INECC (2014) Inventario Nacional de Emisiones GEI. https://www.gob.mx/cms/uploads/attachment/file/110175/CGCCDBC_2015_Tabla_inventario_nacional_GEyCEI_2013.pdf. Accessed 3 Feb 2019

  49. Escamilla-García P, Tavera-Cortés M, Sandoval-Gómez R, Salinas-Callejas E, Alvarado-Raya H (2016) Economic feasibility analysis for electrical generation from biogas in waste disposal sites in Mexico City. Appl Econ 48:5761–5771. https://doi.org/10.1080/00036846.2016.1184378

    Article  Google Scholar 

  50. Pärssinen M, Wahlroos M, Manner J, Syeari S (2019) Waste heat from data centers: an investment analysis. Sustain Cities Soc 44:428–444. https://doi.org/10.1016/j.scs.2018.10.023

    Article  Google Scholar 

  51. Pillai J, Riverol C (2018) Estimation of gas emission and derived electrical power generation from landfills. Trinidad and Tobago as study case. Sustain Energy Technol Assess 29:139–146. https://doi.org/10.1016/j.seta.2018.08.004

    Article  Google Scholar 

  52. Asdrubali F, Ballarini I, Corrado V, Evangelisti L, Grazieschi G, Guattari C (2019) Energy and environmental payback times for an NZEB retrofit. Build Environ 147:461–472. https://doi.org/10.1016/j.buildenv.2018.10.047

    Article  Google Scholar 

  53. SENER (2018) Programa de Desarrollo del Sistema Eléctrico Nacional. Secretaría de Energía. https://www.gob.mx/cms/uploads/attachment/file/331770/PRODESEN-2018-2032-definitiva.pdf. Accessed 14 Jan 2019

  54. Tsai W (2016) Analysis of municipal solid waste incineration plants for promoting power generation efficiency in Taiwan. J Mater Cycles Waste Manag 18:393–398. https://doi.org/10.1007/s10163-014-0345-8

    Article  Google Scholar 

  55. Fruergaard T, Christensen TH, Astrup T (2010) Energy recovery from waste incineration: assessing the importance of district heating networks. Waste Manag 30:1264–1272. https://doi.org/10.1016/j.wasman.2010.03.026

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Emilio Escamilla-García.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escamilla-García, P.E., Jiménez-Castañeda, M.E., Fernández-Rodríguez, E. et al. Feasibility of energy generation by methane emissions from a landfill in southern Mexico. J Mater Cycles Waste Manag 22, 295–303 (2020). https://doi.org/10.1007/s10163-019-00940-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-019-00940-3

Keywords

Navigation