Skip to main content
Log in

Quantitative phase analysis of fly ash of municipal solid waste by X-ray powder diffractometry/Rietveld refinement

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Six crystalline phases (anhydrite, calcite, gehlenite, halite, quartz, and sylvite) and the amorphous phase in fly ash of municipal solid waste (MSW) were quantified using Rietveld refinement of X-ray diffraction data. Corundum was used as an internal standard for the determination of amorphous phase. Gehlenite was synthesized by the solid-phase method to obtain the pure material for calibration standard. Quantitative values of 4.8, 5.1, 12.3, 9.3, 1.3, and 7.1 mass% for anhydrite, calcite, gehlenite, halite, quartz, and sylvite, respectively, were obtained by Rietveld refinement, in agreement with those obtained using the external standard and standard addition methods. Relative standard deviations (n = 5) of each crystalline phase were 1.6–63%. Monthly variations of crystalline phases of MSW fly ash were observed over a year (2008–2009). High correlation (R = 0.8068) was observed between the concentrations of halite and sylvite, which were derived from kitchen wastes such as vegetables and seasonings. Conspicuous concentrations of calcite and quartz were each observed once at June and December, respectively. Rietveld refinement was applicable as a quantitative method for the determination of MSW fly ash composition profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sakai S, Urano S, Takatsuki H (2000) Leaching behavior of PCBs and PCDDs/DFs from some waste materials. Waste Manag 20:241–247. https://doi.org/10.1016/S0956-053X(99)00316-5

    Article  Google Scholar 

  2. Verhulst D, Buekens A, Spencer PJ, Eriksson G (1996) Thermodynamic behavior of metal chlorides and sulfates under the conditions of incineration furnaces. Environ Sci Technol 30:50–56. https://doi.org/10.1021/es940780&%23x002B;

    Article  Google Scholar 

  3. Saikia N, Kato S, Kojima T (2007) Production of cement clinkers from municipal solid waste incineration (MSWI) fly ash. Waste Manag 27:1178–1189. https://doi.org/10.1016/j.wasman.2006.06.004

    Article  Google Scholar 

  4. Aubert JE, Husson B, Sarramone N (2006) Utilization of municipal solid waste incineration (MSWI) fly ash in blended cement Part 1: processing and characterization of MSWI fly ash. J Hazard Mater B136:624–631. https://doi.org/10.1016/j.jhazmat.2005.12.041

    Article  Google Scholar 

  5. Qian G, Song Y, Zhang C, Xia Y, Zhang H, Chui P (2006) Diopside-based glass-ceramics MSW fly ash and bottom ash. Waste Manag 26:1462–1467. https://doi.org/10.1016/j.wasman.2005.12.009

    Article  Google Scholar 

  6. Nishida K, Nagayoshi Y, Ota H, Nagasawa H (2001) Melting and stone production using MSW incinerated ash. Waste Manag 21:443–449. https://doi.org/10.1016/S0956-053X(00)00136-7

    Article  Google Scholar 

  7. Fan Y, Zhang FS, Zhu J, Liu Z (2008) Effective utilization of waste ash from MSW and coal co-combustion power plant-zeolite synthesis. J Hazard Mater 153:382–388. https://doi.org/10.1016/j.jhazmat.2007.08.061

    Article  Google Scholar 

  8. Takaoka M, Nakatsuka D, Takeda N, Fujiwara T (2000) Application of X-ray fluorescence analysis to determination of elements in fly ash (in Japanese). J Jpn Soc Waste Manag Exp 11:333–342. https://doi.org/10.3985/jswme.11.333

    Article  Google Scholar 

  9. Ohbuchi A, Kitano M, Nakamura T (2008) Powder briquette/X-ray fluorescence analysis of major and minor elements in alkali-washed fly ash of municipal solid waste. X-ray Spectrom 37:237–244. https://doi.org/10.1002/xrs.1046

    Article  Google Scholar 

  10. Ferreira C, Ribeiro A, Ottosen L (2005) Effect of major constituents of MSW fly ash during electrodialytic remediation of heavy metals. Sep Sci Technol 40:2007–2019. https://doi.org/10.1081/SS-200068412

    Article  Google Scholar 

  11. Torigai M, Ouyang T, Iwashima K, Osako M, Tanaka M (1997) Studies on microwave digestion procedure for the simultaneous multielement determination of arsenic, antimony, chromium, cadmium, nickel, and lead in municipal waste incineration fly ash by ICP-AES (in Japanese). Bunseki Kagaku 46:401–406. https://doi.org/10.2116/bunsekikagaku.46.401

    Article  Google Scholar 

  12. Mester Z, Angelone M, Brunori C, Cremisini C, Muntau H, Morabito R (1999) Digestion methods for analysis of fly ash samples by atomic absorption spectrometry. Anal Chim Acta 395:157–163. https://doi.org/10.1016/S0003-2670(99)00342-6

    Article  Google Scholar 

  13. Lima AT, Ottosen LM, Pedersen AJ, Riberio AB (2008) Characterization of fly ash bio and municipal waste. Biomass Bioenergy 32:277–282. https://doi.org/10.1016/j.biombioe.2007.09.005

    Article  Google Scholar 

  14. Fujii K, Ochi K, Ohbuchi A, Koike Y (2018) Evaluation of physicochemical properties of radioactive cesium in municipal solid waste incineration fly ash by particle size classification and leaching tests. J Environ Manag 217:157–163. https://doi.org/10.1016/j.jenvman.2018.03.028

    Article  Google Scholar 

  15. Zheng L, Wang C, Wang W, Shi Y, Gao X (2011) Immobilization of MSW fly ash through geopolymerization: effects of water-wash. Waste Manag 31:311–317. https://doi.org/10.1016/j.wasman.2010.05.015

    Article  Google Scholar 

  16. Polyak K, Bodog I, Hlavay J (1994) Determination of chemical species of selected trace elements in fly ash. Talanta 41:1151–1159. https://doi.org/10.1016/0039-9140(94)80086-3

    Article  Google Scholar 

  17. Chang FY, Wey MY (2006) Comparison of the characteristics of bottom and fly ashes generated from various incineration processes. J Hazard Mater 138:594–603. https://doi.org/10.1016/j.jhazmat.2006.05.099

    Article  Google Scholar 

  18. Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Cryst 2:65–71. https://doi.org/10.1107/S0021889869006558

    Article  Google Scholar 

  19. Chung FH, Scott RW (1973) A new approach to the determination of crystallinity of polymers by X-ray diffraction. J Appl Cryst 6:225–230. https://doi.org/10.1107/S0021889873008514

    Article  Google Scholar 

  20. Bish DL, Howard CJ (1988) Quantitative phase analysis using the Rietveld method. J Appl Cryst 21:86–91. https://doi.org/10.1107/S0021889887009415

    Article  Google Scholar 

  21. Taylor JC, Aldridge LP (1993) Full-profile Rietveld quantitative XRD analysis of Portland cement: standard XRD profiles for the major phase tricalcium silicate (C3S: 3CaO·SiO2). Powder Diffr 8:138–144. https://doi.org/10.1017/S0885715600018054

    Article  Google Scholar 

  22. Taylor JC, Hinczak I, Matulis CE (2000) Rietveld full-profile quantification of Portland cement clinker: the importance of including a full crystallography of the major phase polymorphs. Powder Diffr 15:7–18. https://doi.org/10.1017/S0885715600010769

    Article  Google Scholar 

  23. Guirado F, Gali S, Chinchon S (2000) Quantitative Rietveld analysis of aluminous cement clinker phases. Cem Concr Res 30:1023–1029. https://doi.org/10.1016/S0008-8846(00)00289-1

    Article  Google Scholar 

  24. Kocklmann W, Kirfel A (2001) Non-destructive phase analysis of archaeological ceramics using TOF neutron diffraction. J Archaeol Sci 28:213–222. https://doi.org/10.1006/jasc.2000.0651

    Article  Google Scholar 

  25. Pajares I, de la Torre AG, Martinez-Ramirez S, Puertas F, Blanco-Varela MT, Aranda MAG (2002) Quantitative analysis of mineralized white Portland clinkers: the structure of fluorellestadite. Powder Diffr 17:281–286. https://doi.org/10.1154/1.1505045

    Article  Google Scholar 

  26. Schmidt R, Pollmann H (2000) Quantitative of calcium sulpho-aluminate cement by Rietveld analysis. Mater Sci Forum 321–324:1022–1027. https://doi.org/10.4028/www.scientific.net/MSF.321-324.1022

    Article  Google Scholar 

  27. Suherman PM, van Riessen A, O’Connor B, Bolton D, Fairhurst H (2002) Determination of amorphous phase levels in Portland cement clinker. Powder Diffr 17:178–185. https://doi.org/10.1154/1.1471518

    Article  Google Scholar 

  28. Izumi F, Ikeda T (2000) A Rietveld-analysis program RIETAN-98 and its application to zeolites. Mater Sci Forum 321–324:198–203. https://doi.org/10.4028/www.scientific.net/MSF.321-324.198

    Article  Google Scholar 

  29. Nakamura T (1988) Quantitative determination by X-ray diffractometry of calcium sulfate and calcium carbonate in airborne dusts. Powder Diffr 3:86–90. https://doi.org/10.1017/S0885715600013294

    Article  Google Scholar 

  30. Ohbuchi A, Kitano M, Nakamua T (2009) XRF analysis for major and minor elements in fly ash of municipal solid waste incineration using powder briquette method (in Japanese). Bunseki Kagaku 58:249–256. https://doi.org/10.2116/bunsekikagaku.58.249

    Article  Google Scholar 

  31. Toraya H (1990) Array-type universal profile function for powder pattern fitting. J Appl Cryst 23:485–491. https://doi.org/10.1107/S002188989000704X

    Article  Google Scholar 

  32. Cheng GCH, Zussman J (1963) The crystal structure of anhydrite (CaSO4). Acta Cryst 16:767–769. https://doi.org/10.1107/S0365110X63001997

    Article  Google Scholar 

  33. Sass RL, Vidale R, Donohue J (1957) Interatomic distances and thermal anisotropy in sodium nitrate and calcite. Acta Cryst 10:567–570. https://doi.org/10.1107/S0365110X57002029

    Article  Google Scholar 

  34. Ishizawa N, Miyata T, Minota I, Marumo F, Iwai S (1980) A structure investigation of α-Al2O3 at 2170 K. Acta Cryst B36:228–230. https://doi.org/10.1107/S0567740880002981

    Article  Google Scholar 

  35. Swainson IP, Dove MT, Schemahl WW (1992) Neutron powder diffraction study of the åkermanite–gehlenite solid solution series. Phys Chem Miner 19:185–195. https://doi.org/10.1007/BF00202107

    Article  Google Scholar 

  36. Barrett WT, Wallace WE (1954) Studies of NaCl-KCl solid solutions. I. Heats of formation, lattice spacings, densities, Schottky defects and mutual solubilities. J Am Chem Soc 76:366–369. https://doi.org/10.1021/ja01631a014

    Article  Google Scholar 

  37. Young RA, Mackie PE, von Dreele RB (1977) Application of the pattern-fitting structure-refinement method of X-ray powder diffractometer. J Appl Cryst 10:262–269. https://doi.org/10.1107/S0021889877013466

    Article  Google Scholar 

  38. Dollase WA (1986) Correction of intensities for preferred orientation in powder diffractometry: application of the March model. J Appl Cryst 19:267–272. https://doi.org/10.1107/S0021889886089458

    Article  Google Scholar 

  39. Charlu TV, Newton RC, Kleppa OJ (1981) Thermochemistry of synthetic Ca2Al2SiO7 (gehlenite)–Ca2MgSi2O7 (åkermanite) melilites. Geo Cos Acta 45:1609–1617. https://doi.org/10.1016/0016-7037(81)90289-1

    Article  Google Scholar 

  40. Yoshioka T (1969) Some observations on the synthetic gehlenites. J Jpn Assoc Mineral Petrol Econ Geol 61:106–111. https://doi.org/10.2465/ganko1941.61.106

    Article  Google Scholar 

  41. Asahi T, Matsudaira T, Kobayashi S, Nakayama K, Nakamura T (2010) Estimation of purity of chrysotile asbestos by X-ray diffractometry/Rietveld refinement. Anal Sci 26:1295–1300. https://doi.org/10.2116/analsci.26.1295

    Article  Google Scholar 

  42. Ohbuchi A. Nakamura T (2018) Sample preparation and quantitative analysis for powder. Encyclopedia of analytical chemistry. Wiley, New York. https://doi.org/10.1002/9780470027318.a9561

    Google Scholar 

  43. Ohbuchi A, Kitano M, Nakamura T (2008) X-ray fluorescence analysis of sludge ash from sewage disposal plant. X-ray Spectrom 37:544–550. https://doi.org/10.1002/xrs.1085

    Article  Google Scholar 

  44. Kasina M, Kowalski PR, Michalik M (2017) Seasonal changes in chemical and mineralogical composition of sewage sludge incineration residues and their potential for metallic elements and valuable components recovery. Energy Procedia 125:34–40. https://doi.org/10.1016/j.egypro.2017.08.049

    Article  Google Scholar 

  45. Grubbs FE (1950) Sample criteria for testing outlying observations. Ann Math Stat 21:27–58. https://doi.org/10.1214/aoms/1177729885

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Ohbuchi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohbuchi, A., Koike, Y. & Nakamura, T. Quantitative phase analysis of fly ash of municipal solid waste by X-ray powder diffractometry/Rietveld refinement. J Mater Cycles Waste Manag 21, 829–837 (2019). https://doi.org/10.1007/s10163-019-00838-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-019-00838-0

Keywords

Navigation