Skip to main content

Socio-demographic determinants of municipal waste generation: case study of the Czech Republic

Abstract

Increasing pressure of the European Union on diverting municipal waste from landfills requires an active role of households and commands a radical change of their behavior. Knowledge of behavioral patterns enables an effective design of municipal waste management systems. Based on several factors influencing environmental behavior, this paper aims at analyzing differences in municipal waste generation among Czech municipalities using socio-demographic factors. A set of 12 characteristics for 5445 Czech municipalities was investigated. Using ordinary least squares regression, we developed a model with eight indicators describing household size, gender, completed education level and diverse housing characteristics. Even though the model explains only 5.1% of waste generation variability among Czech municipalities, it is statistically significant. Other factors such as age or population density do not improve the model significantly. The resulting model will be used as a basis for further spatial analysis.

This is a preview of subscription content, access via your institution.

References

  1. Dyson B, Chang NB (2005) Forecasting municipal solid waste generation in fast-growing urban region with system dynamic modeling. Waste Manag. https://doi.org/10.1016/j.wasman.2004.10.005

    Google Scholar 

  2. Brown DP (2015) Garbage: how population, landmass, and development interact with culture in the production of waste. Resour Conserv Recy. https://doi.org/10.1016/j.resconrec.2015.02.012

    Google Scholar 

  3. Bandara NJGJ., Hettiaratchi JPA, Wirasinghe SC, Pilapiiya S (2007) Relation of waste generation and composition to socio-economic factors: a case study. Environ Monit Assess. https://doi.org/10.1007/s10661-007-9705-3

    Google Scholar 

  4. Cecere G, Mancinelli S, Mazzanti M (2014) Waste prevention and social preferences: the role of intrinsic and extrinsic motivations. Ecol Econ. https://doi.org/10.1016/j.ecolecon.2014.07.007

    Google Scholar 

  5. Tonglet M, Phillips PS, Bates MP (2004) Determining the drivers for householder pro-environmental behavior: waste minimization compared to recycling. Resour Conserv Recy. https://doi.org/10.1016/j.resconrec.2004.02.001

    Google Scholar 

  6. Barr S (2007) Factors influencing environmental attitudes and behaviors: a U.K. case study of household waste management. Environ Behav. https://doi.org/10.1177/0013916505283421

    Google Scholar 

  7. Hage O, Söderholm P, Berglund C (2009) Norms and economic motivation in household recycling: empirical evidence from Sweden. Resour Conserv Recy. https://doi.org/10.1016/j.resconrec.2008.11.003

    Google Scholar 

  8. van den Bergh JCJM. (2008) Environmental regulation of households: an empirical review of economic and psychological factors. Ecol Econ doi. https://doi.org/10.1016/j.ecolecon.2008.04.007

    Google Scholar 

  9. Lange F, Brückner C, Kröger B, Beller J, Eggert F (2014) Wasting ways: perceived distance to the recycling facilities predicts pro-environmental behavior. Resour Conserv Recy. https://doi.org/10.1016/j.resconrec.2014.07.008

    Google Scholar 

  10. Hornik J, Cherian J, Madansky M, Narayana C (1995) Determinants of recycling behavior: a synthesis of research results. J Soc Econ. https://doi.org/10.1016/1053-5357(95)90032-2

    Google Scholar 

  11. Latif SA, Omar MS, Bidin YH, Awang Z (2012) Environmental values as a predictor of recycling behavior in urban areas: a comparative study. In: ASEAN conference on environment-behaviour studies. Bangkok, Thailand, 16–18 July 2012

  12. Mazzanti M, Zoboli R (2009) Municipal waste Kuznets curves: evidence on socio-economic drivers and policy effectiveness from the EU. Environ Resour Econ. https://doi.org/10.1007/s10640-009-9280-x

    Google Scholar 

  13. Gellynck X, Jacobsen R, Verhelst P (2011) Identifying the key factors in increasing recycling and reducing residual household waste: a case study of the Flemish region of Belgium. J Environ Manage. https://doi.org/10.1016/j.jenvman.2011.06.006

    Google Scholar 

  14. Lebersorger S, Beigl P (2011) Municipal solid waste generation in municipalities: Quantifying impacts of household structure, commercial waste and domestic fuel. Waste Manag. https://doi.org/10.1016/j.wasman.2011.05.016

    Google Scholar 

  15. Slavik J, Pavel J (2013) Do the variable charges really increase the effectiveness and economy of waste management? A case study of the Czech Republic. Resour Conserv Recy. https://doi.org/10.1016/j.resconrec.2012.09.013

    Google Scholar 

  16. Starr J, Nicolson C (2015) Patterns in trash: factors driving municipal recycling in Massachusetts. Resour Conserv Recy. https://doi.org/10.1016/j.resconrec.2015.03.009

    Google Scholar 

  17. EUWID (2016) Debatte um Steuer oder Pfand auf Einwegbecher nimmt an Fahrt auf. EUWID Recycl Entsorg 26(6)

  18. Hoffmeister J, Gellenbeck K (2009) Einfluss demografischer und wirtschaftlicher Faktoren auf die Abfallmengenentwicklung in Berlin—Abschlussdokumentation für die Berliner Stadtreinigungsbetriebe. Prognos AG/INFA GmbH. 17.7.2009

  19. Talalaj IA, Walery M (2015) The effect of gender and age structure on municipal waste generation in Poland. Waste Manag. https://doi.org/10.1016/j.wasman.2015.03.020

    Google Scholar 

  20. Burcin B, Kučera T (2010) Forecast of the Czech Republic population development for the period 2008–2070 (in Czech). http://www.mpsv.cz/files/clanky/8842/Prognoza_2010.pdf. Accessed 20 June 2016

  21. Abbott A, Nandeibam S, O’Shea L (2011) Explaining the variation in household recycling rates across the UK. Ecol Econ doi. https://doi.org/10.1016/j.ecolecon.2011.06.028

    Google Scholar 

  22. D’Elia JLI (2008) Determinants of household waste recycling in Northern Ireland. Economic Research Institute of Northern Ireland. 2008. http://eservices.afbini.gov.uk/erini/pdf/ERINIMon23.pdf. Accessed 27 June 2016

  23. Jenkins RR, Martinez SA, Palmer K, Podolsky MJ (2003) The determinants of household recycling: a material-specific analysis of recycling program features and unit pricing. J Environ Econ Manag. https://doi.org/10.1016/S0095-0696(02)00054-2

    MATH  Google Scholar 

  24. Hage O, Söderholm P (2008) An econometric analysis of regional differences in household waste collection: the case of plastic packaging waste in Sweden. Waste Manag. https://doi.org/10.1016/j.wasman.2007.08.022

    Google Scholar 

  25. Sterner T, Bartelings H (1999) Household waste management in a Swedish municipality: determinants of waste disposal, recycling and composting. Environ Resour Econ. https://doi.org/10.1023/A:1008214417099

    Google Scholar 

  26. Mazzanti M, Montini A, Zoboli R (2008) Municipal waste generation and socioeconomic drivers: evidence from comparing northern and southern Italy. J Environ Dev. https://doi.org/10.1177/1070496507312575

    Google Scholar 

  27. Benítez SO et al (2008) Mathematical modeling to predict residential solid waste generation. Waste Manag. https://doi.org/10.1016/j.wasman.2008.03.020

    Google Scholar 

  28. Dennison GJ, Dodd VA, Whelan B (1996) A socio-economic based survey of household waste characteristics in the city of Dublin, Ireland. I. Waste composition. Resour Conserv Recy. https://doi.org/10.1016/0921-3449(96)01070-1

    Google Scholar 

  29. Kipperberg G (2007) A comparison of household recycling behaviors in Norway and the United States. Environ Resour Econ. https://doi.org/10.1007/s10640-006-9019-x

    Google Scholar 

  30. Johnstone N, Labonne J (2004) Generation of household solid waste in OECD countries: an empirical analysis using macroeconomic data. Land Econ. https://doi.org/10.2307/3655808

    Google Scholar 

  31. Schultz PW, Oskamp S, Mainieri T (1995) Who recycles and when? A review of personal and situational factors. J Environ Psychol. https://doi.org/10.1016/0272-4944(95)90019-5

    Google Scholar 

  32. Keser S, Duzgun S, Aksoy A (2012) Application of spatial and non-spatial data analysis in determination of the factors that impact municipal solid waste generation rates in Turkey. Waste Manag. https://doi.org/10.1016/j.wasman.2011.10.017

    Google Scholar 

  33. SPSS (2017) SPSS Statistics. IBM Knowledge Centre. https://www.ibm.com/support/knowledgecenter/SSLVMB_20.0.0/com.ibm.spss.statistics.help/linear_regression_methods.htm. Accessed 20 June 2017

  34. Daskalopoulos E, Badr O, Probert SD (1998) Municipal solid waste: a prediction methodology for the generation rate and composition in the European Union countries and the United states of America. Resour Conserv Recy. https://doi.org/10.1016/S0921-3449(98)00032-9

    Google Scholar 

  35. Rybová K, Slavík J (2016) Smart cities and ageing population—implications for waste management in the Czech Republic. In: Smart cities symposium Prague. 26 May 2016

  36. Dubská D (2015) Příjmová nerovnost Prahy a regionů. Statistika&My

  37. Bortoleto AP, Kurisu KH, Hanaki K (2012) Model development for household waste prevention behavior. Waste Manag. https://doi.org/10.1016/j.wasman.2012.05.037

    Google Scholar 

  38. López-Mosquera N, Lera-López F, Sánchez M (2015) Key factors to explain recycling, car use and environmentally responsible purchase behaviors: a comparative perspective. Resour Conserv Recy. https://doi.org/10.1016/j.resconrec.2015.03.007

    Google Scholar 

  39. Borgstede C von, Andersson K (2010) Environmental information—explanatory factors for information behavior. Sustainability. https://doi.org/10.3390/su2092785

    Google Scholar 

  40. Meneses GD, Palacio AB (2005) Recycling behavior. Environ Behav. https://doi.org/10.1177/0013916505276742

    Google Scholar 

  41. Thomas C, Sharp V (2013) Understanding the normalisation of recycling behaviour and its implications for other pro-environmental behaviours: a review of social norms and recycling. Resour Conserv Recy. https://doi.org/10.1016/j.resconrec.2013.04.010

    Google Scholar 

  42. Bartoňová D, Kučera M (2005) Prognóza cenzových domácností v České republice na období do roku 2030. Demografie 47:229–244

    Google Scholar 

  43. Dornbusch HJ (2011) Perspektiven für die Logistik und Stadtreinigung. 12. Münsteraner Abfallwirtschaftstage, Münster (February 2011)

  44. Simonetto EO, Borenstein D (2007) A decision support system for the operational planning of solid waste collection. Waste Manag. https://doi.org/10.1016/j.wasman.2006.06.012

    Google Scholar 

Download references

Acknowledgements

This paper is supported by the Czech Science Foundation under project no. 16-14409 “Demographic development and behavioral aspects (e.g., ‘crowding-out’ effect) and their impact on the municipal waste charging policy”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristýna Rybová.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rybová, K., Slavík, J., Burcin, B. et al. Socio-demographic determinants of municipal waste generation: case study of the Czech Republic. J Mater Cycles Waste Manag 20, 1884–1891 (2018). https://doi.org/10.1007/s10163-018-0734-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-018-0734-5

Keywords

  • Municipal waste generation
  • Environmental behavior
  • Influencing factors
  • Demographic change
  • Ordinary least square regression