Advertisement

Evaluation of the waste heat discharged from the Di-ammonium Phosphate production plant: a case study

  • Rim Ben Jabeur
  • Ali Fguiri
  • Mohamed-Razak Jeday
  • Hassan Chekir
  • Hicham Fatnassi
  • Christophe Marvillet
REGIONAL CASE STUDY
  • 47 Downloads

Abstract

This work presents an energy analysis of an industrial plant of production of Di-ammonium Phosphate (DAP plant). It aims to evaluate the important amount of waste heat discharged into environment without re-use. The studied plant includes four units: Utilities unit, Sulfuric acid production unit, Phosphoric acid production unit and DAP production unit. The obtained results showed that the energy losses are around 5.87, 58.8, 32.72 and 35.04 MW for Utilities unit, Sulfuric acid production unit, Phosphoric acid production unit and DAP production unit, respectively. It was found that the wasted sea water represents the important part of DAP discharges.

Keywords

Waste heat Energy performance DAP plant Energy recovery Low temperature Greenhouse 

Notes

Acknowledgements

This research was carried out in the Tunisian Chemical Group (TGC) of Gabès. Authors thank all the staff who worked in this plant.

References

  1. 1.
    Agence pour les Economies d’Energie (1981) Valorisation des rejets thermiques. Collection « Substitutions d’énergie », Techniques générales, FranceGoogle Scholar
  2. 2.
    Syed S (2006) Solid and liquid waste management. Emirates J Eng Res 11(2):19–36Google Scholar
  3. 3.
    Le Couédic E (2013) Les rejets thermiques industriels: état des lieux et pistes d’exploitation. 27émecongrès de l’AQME, Rivière-Du-Loup. 8–10 Mai 2013. https://aqme.org/sites/aqme.org/files/archives/DATA/TEXTEDOC/Eric_LeCouedic_Rejets_Th-Congres_AQME_2013.pdf. Accessed Mar 2014
  4. 4.
    Office National de l’Assainissement (1989) Protection de l’environnement rejets d’effluents dans le milieu hydrique.NT.106.002.Tunisie. https://sites.google.com/site/nt106002/. Accessed Mar 2014
  5. 5.
    US Department of Energy (2008) Waste heat recovery: technology and opportunities in US Industry. http://www1.eere.energy.gov/manufacturing/intensiveprocesses/pdfs/waste_heat_recovery.pdf. Accessed Jan 2015
  6. 6.
    Tchanche BF, Lambrinos Gr, Frangoudakis A, Papadakis G (2011) Low-grade heat conversion into power using organic Rankine cycles—a review of various applications. Renew Sustain Energy Rev 15:3963–3979CrossRefGoogle Scholar
  7. 7.
    Kumar U, Karimi M (2014) Low grade waste heat recovery for optimized energy efficiency and enhanced sustainability in process industries: a comprehensive review. Int J Multidiscip Sci Eng 5(4):15–26Google Scholar
  8. 8.
    Al-Rabghi OM, Beirutty M, Akyurt M, Najjar Y, ALP T (1993) Review paper: recovery and utilization of waste heat. Heat Recovery Syst CHP 13(5):463–470CrossRefGoogle Scholar
  9. 9.
    Daniel Favrat (2015) Final report summary—LOVE (low-temperature heat valorisation towards electricity production). http://cordis.europa.eu/result/rcn/153376_en.html. Accessed 11 Sept 2017
  10. 10.
    MURIEL DE VÉRICOURT (2012) Le projet Valenthin va valoriser les rejets thermiques basse température. https://www.industrie-techno.com/le-projet-valenthin-va-valoriser-les-rejets-thermiques-basse-temperature.22308. Accessed 11 Sept 2017
  11. 11.
    Zhang Y, Zhang Y, Shi W, Wang X (2016) Application of concept of heat adaptor: determining an ideal central heating system using industrial waste heat. Appl Therm Eng 111:1387–1393.  https://doi.org/10.1016/j.applthermaleng.2016.08.090 CrossRefGoogle Scholar
  12. 12.
    INNOVOGRO consultant (2010) Potentiel énergétique des rejets thermiques industriels au Quebec. http://www.mamot.gouv.qc.ca/pub/developpement_territorial/ruralite/groupes_travail/potentiel_energetique_rejets_thermiques.pdf. Accessed Mar 2014
  13. 13.
    Merle G (1991) Utilisations des rejets d’eaux tièdes des centrales thermiques en aquaculture. Hydroécol. Appl. 1:1–26. https://www.hydroecologie.org/articles/hydro/pdf/1991/01/hydro91101.pdf. Accessed Feb 2014
  14. 14.
    Gosselin A (2004) Valorisation des rejets thermiques et du CO2 de la centrale du Suroit d’hyrbo-Québec, Université Laval. http://www.regie-energie.qc.ca/audiences/3526-04/MemoiresParticip3526/Memoire_CLD-Beauharnois-Salaberry_20avril04.pdf. Accessed Mar 2014
  15. 15.
    Commission des Communautés européennes (1988) Valorisation des rejets thermiques des centrales électriques dans la communauté européenne, tome I: synthèse, tome II: études de cas, projet de démonstration, rapport finalGoogle Scholar
  16. 16.
    François GCellier (2011) Un parc agrothermique à Saint-Félicien. http://www.portailconstructo.com/actualites/parc_agrothermique_saint_felicien. Accessed Feb 2014
  17. 17.
    Groupe Chimique Tunisien à Gabès (2016) Manuel opératoire, TunisieGoogle Scholar
  18. 18.
    Robert H, Perry DW, Green JO, Maloney (1999) Perry’s chemical engineers’ handbook, 7th edn. McGraw-Hill Companies, United StatesGoogle Scholar
  19. 19.
    Yaws CL (2003) Yaw’s handbook of thermodynamic and physical of chemical compounds. Knovel, NorwichGoogle Scholar
  20. 20.
    Hisham T, El-Dessouky, Hisham M, Ettouney (2002) Foundamentals of salt water desalination, 1st edn. Elsevier, NetherlandGoogle Scholar
  21. 21.
    Becker P (1989) Phosphates and phosphoric acid: raw materials. Technology and economics of the wet processes, 2nd edn. Marcel Decker Inc., New YorkGoogle Scholar
  22. 22.
    Mohamed BAGANE. (1995) Contribution à l’étude du séchage du Di Ammonium Phosphate. Thèse de doctorat, Université de Gabès, École nationale d’ingénieurs de GabèsGoogle Scholar
  23. 23.
    Enova SF (2009) Potensial studie for utnyttelse av spillvarme fra norsk industri. RapportGoogle Scholar
  24. 24.
    Pehnt M, Bödeker J, Arens M, Jochem E, Idrissova F (2011) Industrial waste heat—tapping into a neglected efficiency potential. Proceedings of ECEEE 2011 summer study, European council for energy efficient economyGoogle Scholar
  25. 25.
    Formann C, Muritala IK, Pardemann R, Meyer B (2016) Estimating the global waste heat potential. Renew Sustain Energy Rev 57:1568–1579CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Rim Ben Jabeur
    • 1
  • Ali Fguiri
    • 1
  • Mohamed-Razak Jeday
    • 1
  • Hassan Chekir
    • 2
  • Hicham Fatnassi
    • 3
  • Christophe Marvillet
    • 4
  1. 1.Research Unit “Energy and Environment” (UR/11/ES/81), National Engineering School of Gabes (ENIG)Gabes UniversityGabesTunisia
  2. 2.Tunisian Chemical Group (TCG)GabesTunisia
  3. 3.INRA,University Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia AgrobiotechSophia-AntipolisFrance
  4. 4.French Institute of Industrial Refrigeration and Engineering Climate (IFFI)ParisFrance

Personalised recommendations