Skip to main content

A new approach to metal- and polymer-recovery from metallized plastic waste using mechanical treatment and subcritical solvents


Galvanized or “chromium-plated” plastics are well known to the consumer from the automotive sector and sanitary area. Polymers such as acrylonitrile butadiene styrene (ABS) are typically coated with a layer system of chromium, nickel and copper to obtain the characteristic optical surface and resistance properties. Due to the complex manufacturing process and high quality requirements, the production of these plastic metal composites generates 10–30% of rejects. We, therefore, developed an innovative process cascade for the recovery of both components (metal and polymer) applying established technologies (mechanical pre-treatment, classification, melt filtration, CreaSolv® Process) and were able to obtain ABS regranulate having excellent properties regarding the characteristic values for strength but slight compromises in impact characteristics. Blends with different amounts of virgin ABS, virgin PC and recycled ABS material as well as the pure cases were successfully re-metallized, all of them passing adhesion test, thermal shock resistance and CASS test. The high purity of the recovered materials led to increased redemption prices for metal and polymer by a factor of 6 and 2.5, respectively. Thus, the value added of metallized plastic waste is maximized, revealing a highly positive economic prognosis of a commercial implementation of the developed process—even at moderate scale.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Dennis JK, Such TE (1993) Nickel and chromium plating. Woodhead Publishing Ltd, Cambridge

    Book  Google Scholar 

  2. 2.

    Lampke T, Steger H, Zacher M, Steinhäuser S, Wielage B (2008) Status quo and trends in electroplating. Mater Werkst 39:52–57

    Article  Google Scholar 

  3. 3.

    Menz V, Lefevre J, Schlummer M (2012) Werte wiedergewinnen (regaining values). Kunststoffe 7:72–75

    Google Scholar 

  4. 4. GmbH (2017) Finance portal homepage. Accessed 9 June 2017

  5. 5.

    InfoMine Inc (2017) Finance portal homepage. Accessed 9 June 2017

  6. 6.

    Schmidt H, Schlieper T, Etterer M, Daub J (2003) Entmetallisierung von metallisierten Kunststoffteilen unterschiedlicher Geometrie und Größe durch chemisches Ätzverfahren. DE10237960A1

  7. 7.

    Schmiemann A (2000) Recycling metallbeschichteter Kunststoffteile. Accessed 15 June 2017

  8. 8.

    Knappich F, Schlummer M, Eggert K, Wolff F, Agulla K (2017) Light at the end of the tunnel—recycling of plastic-metal composite materials from headlights. Kunstst Int 6–7:51–54

    Google Scholar 

  9. 9.

    Moskalyk RR, Alfantazi AM (2003) Review of copper pyrometallurgical practice: today and tomorrow. Miner Eng 16:893–919

    Article  Google Scholar 

  10. 10.

    Miandad R, Barakat MA, Aburiazaiza AS, Rehan M, Nizami AS (2016) Catalytic pyrolysis of plastic waste: a review. Process Saf Environ 102:822–838

    Article  Google Scholar 

  11. 11.

    Schlummer M, Prestel H, Hermann R (2013) Filtration gequollener Abfallkunststoffe aus Galvanikverbund-Abfällen zur Abreinigung der Galvanometalle und zur Produktion hochwertiger Sekundärkunststoffe für den Spritzgusseinsatz. Final project report. German Federal Environmental Foundation

  12. 12.

    Knappich F, Hartl F, Schlummer M, Mäurer A (2017) Complete recycling of composite material comprising polybutylene terephthalate and copper. Recycling 2:10–20

    Article  Google Scholar 

  13. 13.

    Gall RL, Anklin RT, Mende WB (1983) Reclamation and rejuventation of plastic and metal from metallized plastic. US 4,406,411

  14. 14.

    Das A, Vidyadhar A, Mehrotra SP (2015) A novel flowsheet for the recovery of metal values from waste printed circuit boards. Resour Conserv Recy 53:464–469

    Article  Google Scholar 

  15. 15.

    Agrarwal A, Kumar V, Pandey BD, Sahu KK (2005) A comprehensive review on the hydro metallurgical process for the production of nickel and copper powders by hydrogen reduction. Mater Res Bull 41:879–892

    Article  Google Scholar 

  16. 16.

    Schlummer M, Mäurer A, Wagner S, Berrang A, Siebert T, Knappich F (2017) Recycling of flame retarded waste polystyrene foams (eps and xps) to ps granules free of hexabromocyclododecane (hbcdd). Adv Recy Waste Manag 2:131

    Google Scholar 

  17. 17.

    17 Marwede M, Berger W, Schlummer M, Mäurer A, Reller A (2013) Recycling paths for thin-film chalcogenide photovoltaic waste—current feasible processes. Renew Energ 55:220–229

    Article  Google Scholar 

  18. 18.

    Schlummer M, Mäurer A (2006) Recycling of styrene polymers from shredded screen housings containing brominated flame retardants. J Appl Polym Sci 102:1262–1273

    Article  Google Scholar 

  19. 19.

    Arends D, Schlummer M, Mäurer A (2012) Removal of inorganic colour pigments from acrylonitrile butadiene styrene by dissolution-based recycling. J Mater Cycles Waste Manag 14:85–93

    Article  Google Scholar 

  20. 20.

    Hyde JR, Lester E, Kingman S, Pickering S, Wong KH (2006) Supercritical propanol, a possible route to composite carbon fibre recovery: a viability study. Compos Part A Appl S 37:2171–2175

    Article  Google Scholar 

  21. 21.

    Schneller A, Henry L, Doerfler J, Mueller WM, Aymonier C, Horn S (2016) Recycling of carbon fibers from carbon fiber reinforced thermoset polymers by use of near- and supercritical fluids. Conference paper. In: 17th European conference on composite materials, Munich

    Google Scholar 

  22. 22.

    Singh N, Hui D, Singh R, Ahuja IPS, Feo L, Fraternali F (2017) Recycling of plastic solid waste: a state of art review and future applications. Compos Part B Eng 115:409–422

    Article  Google Scholar 

  23. 23.

    Hansen CM (2007) Hansen solubility parameters—a user’s handbook. CRC Press, Boca Raton

    Book  Google Scholar 

  24. 24.

    Creacycle GmbH (2016) Company homepage. Accessed 26 July 2017

  25. 25.

    Schlummer M, Mäurer A, Altnau G (2012) Recycling of high performance polymers from electro(nic) scrap. Conference paper. Electronics Goes Green 2012+ (EGG), Berlin

    Google Scholar 

  26. 26.

    Deutsches Institut für Normung (2011) Plastics—determination of the melt mass-flow rate (mfr) and melt volume-flow rate (mvr) of thermoplastics (iso 1133-1:2011); german version en iso 1133-1:2011

  27. 27.

    Deutsches Institut für Normung (2012) Plastics—determination of tensile properties (iso 527-1/-2:2012); german version en iso 527-1/-2:2012

  28. 28.

    Deutsches Institut für Normung (2010) Plastics—determination of charpy impact properties (iso 179-1:2010); german version en iso 179-1:2010

  29. 29.

    Deutsches Institut für Normung (2012) Plastics—methods for determining the density of non-cellular plastics (iso 1183-1:2012); german version en iso 1183-1:2012

  30. 30.

    Ettre LS (2001) Headspace—gas chromatography. Springer, Boston

    Book  Google Scholar 

  31. 31.

    Deutsches Institut für Normung (2009) Electrotechnical products - determination of levels of six regulated substances (lead, mercury, cadnium, hexavalent chromium, polybrominated biphenyls, polybrominated diphenyl ethers) (iec 62321:2008); german version en 62321:2009

  32. 32.

    Knappich F, Schlummer M, Knauer D, Patalewski R (2017) Neuer Glanz für Kunststoffe - werkstoffliches Recycling von Galvanikabfällen (New gloss for polymers - recycling of galvanized plastic waste). Conference paper. Aufbereitung und recycling, TU Bergakademie Freiberg

Download references


This work was supported by the Bavarian State Ministry of the Environment and Consumer Protection (Grant Number BAF01SoFo-65342). The authors would like to thank the networking partners of the ForCYCLE project.

Author information



Corresponding author

Correspondence to Fabian Knappich.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Knappich, F., Schlummer, M., Mäurer, A. et al. A new approach to metal- and polymer-recovery from metallized plastic waste using mechanical treatment and subcritical solvents. J Mater Cycles Waste Manag 20, 1541–1552 (2018).

Download citation


  • Polymer recycling
  • Chromium
  • Automotive
  • ABS
  • CreaSolv® Process