Skip to main content
Log in

By-products of bioenergy systems (anaerobic digestion and gasification) as sources of plant nutrients: scope of processed application and effect on soil and crop

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Management of the by-products generated during bioenergy conversion technologies is essential for technology sustainability and due to strict adherence to waste minimisation legislation. We investigated the potential of four types of bioenergy by-products (BEBPs), i.e. char from rice husk and digestates from 3 types of feedstocks: (i) Ipomoea carnea:cow dung (ICD), (ii) rice straw:green gram:cow dung (RGC) and (iii) cow dung (CD) as nutrient input for Zea mays L. Digestates were applied in four application phases, i.e., whole, solid, liquid and ash from solid digestates. BEBPs provoked significant changes in soil pH, electrical conductivity, available NPK, organic carbon and micronutrients depending upon both feedstock and phase. Digestates in solid and whole phases were found better as an organic amendment, whereas RGC and ICD digestates were superior in maintaining higher soil available P and K, respectively. BEBP showed satisfactory performance compared to BEBP-untreated control in terms of crop growth and yield, but chemical treatment resulted in the highest yield. N preservation against volatilization loss may be required through appropriate timing and method of application in case of high-ammonia-N-containing ICD digestates. Outcomes of this investigation are expected to be useful to undertake selective utilization practices of BEBPs for better handling and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(adapted from [15])

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. IPCC (Intergovernmental Panel on Climate Change) (2007) Climate change. Syn-thesis report. Cambridge University Press, Cambridge. https://www.ipcc.ch/pdf/assessment-report/ar4/wg2/ar4_wg2_full_report.pdf. Accessed 24 Mar 2018

  2. Bauen AW, Dunnett AJ, Richter GM, Dailey AG, Aylott M, Casella E, Taylor G (2010) Modelling supply and demand of bioenergy from short rotation coppice and Miscanthus in the UK. Bioresour Technol 101:8132–8143. https://doi.org/10.1016/j.biortech.2010.05.002

    Article  Google Scholar 

  3. Taheripour F, Hertel TW, Tyner WE, Beckman JF, Birur DK (2010) Biofuels and their by-products: global economic and environmental implications. Biomass Bioenergy 34:278–289. https://doi.org/10.1016/j.biombioe.2009.10.017

    Article  Google Scholar 

  4. Galvez A, Sinicco T, Cayuela ML, Mingorance MD, Fornasier F, Mondini C (2012) Short term effects of bioenergy by-products on soil C and N dynamics, nutrient availability and biochemical properties. Agric Ecosyst Environ 160:3–14. https://doi.org/10.1016/j.agee.2011.06.015

    Article  Google Scholar 

  5. Vaneeckhaute C, Meers E, Michels E, Ghekiere G, Accoe F, Tack FM (2013) Closing the nutrient cycle by using bio-digestion waste derivatives as synthetic fertilizer substitutes: a field experiment. Biomass Bioenergy 55:175–189. https://doi.org/10.1016/j.biombioe.2013.01.032

    Article  Google Scholar 

  6. Choi YS, Choi SK, Kim SJ, Han SY, Yoon TH, Soysa R (2018) Development of combined plant of biogas and bio solid-refuse-fuel from swine manure slurry. J Mater Cycles Waste Manag 20(1):369–374. https://doi.org/10.1007/s10163-017-0594-4

    Article  Google Scholar 

  7. Pivato A, Vanin S, Raga R, Lavagnolo MC, Barausse A, Rieple A, Laurent A, Cossu R (2016) Use of digestate from a decentralized on-farm biogas plant as fertilizer in soils: an ecotoxicological study for future indicators in risk and life cycle assessment. Waste Manag 49:378–389. https://doi.org/10.1016/j.wasman.2015.12.009

    Article  Google Scholar 

  8. Monnet F (2003) An introduction to anaerobic digestion of organic wastes. Final Report. Remade Scotland. http://www.remade.org.uk/Organics/anaerobicdigestion.htm. Accessed 15 Mar 2018

  9. Gell K, van Groenigen JW, Cayuela ML (2011) Residues of bioenergy production chains as soil amendments: Immediate and temporal phytotoxicity. J Hazard Mater 186:2017–2025. https://doi.org/10.1016/j.jhazmat.2010.12.105

    Article  Google Scholar 

  10. Salminen E, Rintala J, Härkönen J, Kuitunen M, Högmander H, Oikari A (2001) Anaerobically digested poultry slaughterhouse wastes as fertiliser in agriculture. Bioresour Technol 78:81–88. https://doi.org/10.1016/S0960-8524(00)00160-7

    Article  Google Scholar 

  11. Tambone F, Scaglia B, D’Imporzano G, Schievano A, Orzi V, Salati S, Adani F (2010) Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere 81:577–583. https://doi.org/10.1016/j.chemosphere.2010.08.034

    Article  Google Scholar 

  12. Garfí M, Gelman P, Comas J, Carrasco W, Ferrer I (2011) Agricultural reuse of the digestate from low-cost tubular digestates in rural Andean communities. Waste Manag 31:2584–2589. https://doi.org/10.1016/j.wasman.2011.08.007

    Article  Google Scholar 

  13. Alfa MI, Adie DB, Igboro SB, Oranusi US, Dahunsi SO, Akali DM (2014) Assessment of biofertilizer quality and health implications of anaerobic effluent of cow dung and chicken droppings. Ren Energy 63:681–686. https://doi.org/10.1016/j.renene.2013.09.049

    Article  Google Scholar 

  14. Chiew YL, Spångberg J, Baky A, Hansson PA, Jönsson H (2015) Environmental impact of recycling digested food waste as a fertilizer in agriculture—a case study. Resour Conserv Recycl 95:1–14. https://doi.org/10.1016/j.resconrec.2014.11.015

    Article  Google Scholar 

  15. Kataki S, Hazarika S, Baruah DC (2017) Assessment of by-products of bioenergy systems (anaerobic digestion and gasification) as potential crop nutrient. Waste Manag 59:102–117

    Article  Google Scholar 

  16. Kataki S, Hazarika S, Baruah DC (2017) Investigation on by-products of bioenergy systems (anaerobic digestion and gasification) as potential crop nutrient using FTIR, XRD, SEM analysis and phyto-toxicity test. J Environ Manag 196:201–216

    Article  Google Scholar 

  17. Wang Y, Li W, Wang F, Liu S, Wang W (2018) Performance of maize plant reconstruction and storage nutrient mobilization induced by liquid phase of anaerobically digested pig manure. J Mater Cycles Waste Manag 20(1):274–282. https://doi.org/10.1007/s10163-016-0576-y

    Article  Google Scholar 

  18. Yamashiro T, Lateef SA, Ying C, Beneragama N, Lukic M, Masahiro I, Ihara I, Nishida T, Umetsu K (2013) Anaerobic co-digestion of dairy cow manure and high concentrated food processing waste. J Mater Cycles Waste Manag 15(4):539–547. https://doi.org/10.1007/s10163-012-0110-9

    Article  Google Scholar 

  19. Qi G, Pan Z, Sugawa Y, Andriamanohiarisoamanana FJ, Yamashiro T, Iwasaki M, Kawamoto K, Ihara I, Umetsu K (2018) Comparative fertilizer properties of digestates from mesophilic and thermophilic anaerobic digestion of dairy manure: focusing on plant growth promoting bacteria (PGPB) and environmental risk. J Mater Cycles Waste Manag 20(3):1448–1457. https://doi.org/10.1007/s10163-018-0708-7

    Article  Google Scholar 

  20. Garg RN, Pathak H, Das DK, Tomar RK (2005) Use of fly ash and bioslurry for improving wheat yields and physical properties of soil. Environ Monit Assess 107:1–9. https://doi.org/10.1007/s10661-005-2021-x

    Article  Google Scholar 

  21. Beni C, Servadio P, Marconi S, Neri U, Aromolo R, Diana G (2012) Anaerobic digestate administration: effect on soil physical and mechanical behavior. Commun Soil Sci Plant Anal 43:821–834. https://doi.org/10.1080/00103624.2012.648359

    Article  Google Scholar 

  22. Erhart E, Siegl T, Bonell M, Unterfrauner H, Peticzka R, Ableidinger C, Haas D, Hartl W (2014) Fertilization with liquid digestate in organic farming—effects on humus balance, soil potassium contents and soil physical properties, EGU general assembly conference abstracts 16, p 4419

  23. Singh KP, Suman A, Singh PN, Srivastava TK (2007) Improving quality of sugarcane growing soils by organic amendments under subtropical climatic conditions of India. Biol Fertil Soils 44:367–376. https://doi.org/10.1007/s00374-007-0216-8

    Article  Google Scholar 

  24. Hazarika S, Barooah MJ, Dutta PK, Rajkhowa P (2015) Enriched biogas slurry a potential source of nutrients for organic farming. Akshay Urja. http://mnre.gov.in/file-manager/akshay-urja/september-october-2015/EN/26-29.pdf. Accessed 23 Mar 2018

  25. Bharde NM, Shivay YS, Singh S (2003) Effect of bioslurry and neem oil-treated urea sources in rice (Oryza sativa)—Wheat (Triticum aestivum) cropping system. Indian J Agron 48:73–75

    Google Scholar 

  26. Abubaker J, Risberg K, Pell M (2012) Biogas residues as fertilisers: effects on wheat growth and soil microbial activities. Appl Energy 99:126–134. https://doi.org/10.1016/j.apenergy.2012.04.050

    Article  Google Scholar 

  27. Lošák T, Hlušek J, Kráčmar S, Varga L (2008) The effect of nitrogen and sulphur fertilization on yield and quality of kohlrabi (Brassica oleracea, L.). Revista Brasileira de Ciencia do Solo 32:697–703. https://doi.org/10.1590/S0100-06832008000200024

    Article  Google Scholar 

  28. Gnanamani A, Kasturi-Bai R (1992) Influence of biodigested slurry on rice-gram cultivation. Bioresour Technol 41:217–221. https://doi.org/10.1016/0960-8524(92)90005-I

    Article  Google Scholar 

  29. Chantigny MH, Angers DA, Bélanger G, Rochette P, Eriksen-Hamel N, Bittman S, Buckley K, Massé D, Gasser MO (2008) Yield and nutrient export of grain corn fertilized with raw and treated liquid swine manure. Agron J 100:1303–1309. https://doi.org/10.2134/agronj2007.0361

    Article  Google Scholar 

  30. de Boer HC (2008) Co-digestion of animal slurry can increase short-term nitrogen recovery by crops. J Environ Qual 37:1968–1973. https://doi.org/10.2134/jeq2007.0594

    Article  Google Scholar 

  31. Loria ER, Sawyer JE, Backer DW, Lundwall JP, Lorimor JC (2007) Use of anaerobically digested swine manure as a nitrogen source in corn production. Agron J 99:1119–1129. https://doi.org/10.2134/agronj2006.0251

    Article  Google Scholar 

  32. Möller K, Stinner W, Deuker A, Leithold G (2008) Effects of different manuring systems with and without biogas digestion on nitrogen cycle and crop yield in mixed organic dairy farming systems. Nutr Cycl Agroecosyst 82:209–232. https://doi.org/10.1007/s10705-008-9196-9

    Article  Google Scholar 

  33. Zhao L, Cao X, Mašek O, Zimmerman A (2013) Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. J Hazard Mater 256–257:1–9. https://doi.org/10.1016/j.jhazmat.2013.04.015

    Article  Google Scholar 

  34. Aston S, Doerr S, Street-Perrott A (2013) The impacts of pyrolysis temperature and feedstock type on biochar properties and the effects of biochar application on the properties of a sandy loam. EGU general assembly. Vienna, Austria, Vienna Geophysical Research Abstracts 15, pp 11–83

  35. Laird DA, Fleming P, Davis DD, Horton R, Wang B, Karlen DL (2010) Impact of biochar amendments on the quality of a typical Midwestern agricultural soil. Geoderma 158:443–449. https://doi.org/10.1016/j.geoderma.2010.05.013

    Article  Google Scholar 

  36. Zhang A, Liu Y, Pan G, Hussain Q, Li L, Zheng J, Zhang X (2012) Effect of biochar amendment on maize yield and green-house gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant Soil 351:263–275. https://doi.org/10.1007/s11104-011-0957-x

    Article  Google Scholar 

  37. Balsari P, Gioelli F, Menardo S, Paschetta E (2010) The (re)use of mechanical separated solid fraction of digested or not digested slurry in anaerobic digestion plants. Proceedings paper published. In: Cordovil CSC, Ferreira L (eds) Proceedings of the 14th ramiran international conference, Lisboa, Portugal

  38. Teglia C, Tremier A, Martel J (2011) Characterization of solid digestates: part 2, assessment of the quality and suitability for composting of six digested products. Waste Biomass Valoriz 2:113–126. https://doi.org/10.1007/s12649-010-9059-x

    Article  Google Scholar 

  39. Kratzeisen M, Starcevic N, Martinov M, Maurer C, Müller J (2010) Applicability of biogas digestate as solid fuel. Fuel 89:2544–2548. https://doi.org/10.1016/j.fuel.2010.02.008

    Article  Google Scholar 

  40. Baruah TC, Borthakur HP (1999) A textbook of soil analysis. Vikas Publishing House Pvt. Ltd., New Delhi

    Google Scholar 

  41. Piper CS (1966) Soil and plant analysis. Hans Publisher, Bombay

    Google Scholar 

  42. Walkley A, Black IA (1934) An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci 37:29–37

    Article  Google Scholar 

  43. Subbiah B, Asija GL (1956) A rapid procedure for estimation of available nitrogen in soils. Curr Sci 25:259–260

    Google Scholar 

  44. Merrill AL, Watt BK (1974) Energy value of foods: basis and derivation. In: Agriculture Handbook No. 74. ARS United States Department of Agriculture, Washington, DC

    Google Scholar 

  45. Bray HR, Kurtz LT (1945) Determination of total, organic and available forms of phosphorus in soils. Soil Sci 59:39–45

    Article  Google Scholar 

  46. McKee GW (1964) A coefficient for computing leaf area in hybrid corn. Agron J 56:240–241

    Article  Google Scholar 

  47. Radford PJ (1967) Growth analysis formulae—their use and abuse. Crop Sci 7:171–175. https://doi.org/10.2135/cropsci1967.0011183X000700030001x

    Article  Google Scholar 

  48. Haraguchi M, Gorniak SL, Ikeda K, Minami Y, Kato A, Watson AA, Nash RJ, Molyneux RJ, Asano N (2003) Alkaloidal components in the poisonous plant, Ipomoea carnea (Convolvulaceae). J Agric Food Chem 51:4995–5000. https://doi.org/10.1021/jf0341722

    Article  Google Scholar 

  49. Hueza IM, Guerra JL, Haraguchi M, Naoki A, Górniak SL (2005) The role of alkaloids in Ipomoea carneatoxicosis: a study in rats. Exp Toxicol Pathol 57:53–58. https://doi.org/10.1016/j.etp.2005.02.004

    Article  Google Scholar 

  50. Yan F, Schubert S, Mengel K (1996) Soil pH increase due to biological decarboxylation of organic acids. Soil Biol Biochem 28:617–623. https://doi.org/10.1016/0038-0717(95)00180-8

    Article  Google Scholar 

  51. Sparling GP, McLay CDA, Tang C, Raphael C (1999) Effect of short-term legume residue decomposition on soil acidity. Soil Res 37:561–574. https://doi.org/10.1071/S98104

    Article  Google Scholar 

  52. Singleton P (2006) Nutrient management concepts: ph and nutrient formulation, University of Hawaii Cooperative Extension Service

  53. Muscolo A, Settineri G, Papalia T, Attinà E, Basile C, Panuccio MR (2017) Anaerobic co-digestion of recalcitrant agricultural wastes: characterizing of biochemical parameters of digestate and its impacts on soil ecosystem. Sci Total Environ 586:746–752. https://doi.org/10.1016/j.scitotenv.2017.02.051

    Article  Google Scholar 

  54. Insam H, Gómez-Brandón M, Ascher J (2015) Manure-based biogas fermentation residues: friend or foe of soil fertility? Soil Biol Biochem 84:1–14. https://doi.org/10.1016/j.soilbio.2015.02.006

    Article  Google Scholar 

  55. Eusterhues K, Rumpel C, Kögel-Knabner I (2005) Organo-mineral associations in sandy acid forest soils: importance of specific surface area, iron oxides and micropores. Euro J Soil Sci 56:753–763. https://doi.org/10.1111/j.1365-2389.2005.00710.x

    Article  Google Scholar 

  56. Masion A, Vilgé-Ritter A, Rose J, Stone WE, Teppen BJ, Rybacki D, Bottero JY (2000) Coagulation-flocculation of natural organic matter with Al salts: speciation and structure of the aggregates. Environ Sci Technol 34:3242–3246. https://doi.org/10.1021/es9911418

    Article  Google Scholar 

  57. Reddy SK, Singh M, Tripathi AK, Singh M, Saha MN (2003) Changes in amount of organic and inorganic fractions of nitrogen in an Eutrochrept soil after long-term cropping with different fertilizer and organic manure inputs. J Plant Nutr Soil Sci 166:232–238. https://doi.org/10.1002/jpln.200390034

    Article  Google Scholar 

  58. Saha R, Mishra VK, Majumdar B, Laxminarayana K, Ghosh PK (2010) Effect of integrated nutrient management on soil physical properties and crop productivity under a maize (Zea mays)–mustard (Brassica campestris) cropping sequence in acidic soils of Northeast India. Comm Soil Sci Plant Anal 41:2187–2200. https://doi.org/10.1080/00103624.2010.504799

    Article  Google Scholar 

  59. Hazarika S, Talukdar NC, Borah K, Barman N, Medhi BK, Thakuria D, Barooah AK (2007) Long-term effect of pulp and paper mill effluent on chemical and biological properties of a heavy textured acidic soil in Assam. J Indian Soc Soil Sci 55:45–51

    Google Scholar 

  60. Kirchmann H, Witter E (1992) Composition of fresh, aerobic and anaerobic farm animal dungs. Bioresour Technol 40:137–142. https://doi.org/10.1016/0960-8524(92)90199-8

    Article  Google Scholar 

  61. Terhoeven-Urselmans T, Scheller E, Raubuch M, Ludwig B, Joergensen RG (2009) CO2 evolution and N mineralization after biogas slurry application in the field and its yield effects on spring barley. Appl Soil Ecol 42:297–302. https://doi.org/10.1016/j.apsoil.2009.05.012

    Article  Google Scholar 

  62. Chan KY, Van Zwieten L, Meszaros I, Downie A, Joseph S (2008) Agronomic values of greenwaste biochar as a soil amendment. Soil Res 45(8):629–634. https://doi.org/10.1071/SR07109

    Article  Google Scholar 

  63. Teglia C, Tremier A, Martel JL (2011) Characterization of solid digestates: part 1, review of existing indicators to assess solid digestates agricultural use. Waste Biomass Valor 2:43–58. https://doi.org/10.1007/s12649-010-9051-5

    Article  Google Scholar 

  64. Nkoa R (2014) Agricultural benefits and environmental risks of soil fertilization with anaerobic digestates: a review. Agron Sustain Dev 34:473–492. https://doi.org/10.1007/s13593-013-0196-z

    Article  Google Scholar 

  65. Hue NV, Ikawa H, Silva JA (1994) Increasing plant-available phosphorus in an Ultisol with a yard-waste compost. Commun Soil Sci Plant Anal 25:3291–3303. https://doi.org/10.1080/00103629409369265

    Article  Google Scholar 

  66. Iyamuremye F, Dick RP (1996) Organic amendments and phosphorus sorption by soils. Adv Agron 56:139–185

    Article  Google Scholar 

  67. Hue NV (1991) Effect of organic acids/anions on P sorption and phytoavailability in soils with different mineralogies. Soil Sci 152:463–471. https://doi.org/10.1097/00010694-199112000-00009

    Article  Google Scholar 

  68. Haynes RJ, Mokolobate MS (2001) Amelioration of Al toxicity and P deficiency in acid soils by additions of organic residues: a critical review of the phenomenon and the mechanisms involved. Nutr Cycl Agroecosyst 59:47–63. https://doi.org/10.1023/A:1009823600950

    Article  Google Scholar 

  69. Kumar M, Jha AK, Hazarika S, Verma BC, Choudhury BU, Ramesh T, Devi MH (2016) Micronutrients (B, Zn, Mo) for improving crop production on acidic soils of Northeast India. Natl Acad Sci Lett 39:85–89. https://doi.org/10.1007/s40009-015-0409-x

    Article  Google Scholar 

  70. Harrison PJ, Hurd CL (2001) Nutrient physiology of seaweeds: application of concepts to aquaculture. Cahiers de Biologie Marine 42:71–82

    Google Scholar 

  71. Yuan F, Arin MA, Black TA, Morgenstern K (2007) Energy and water exchanges modulated by soil-plant nitrogen cycling in a temperate Pacific Northwest conifer forests. Ecol Model 201:331–347. https://doi.org/10.1016/j.ecolmodel.2006.10.023

    Article  Google Scholar 

  72. Rodríguez D, Keltjens WG, Goudriaan J (1998) Plant leaf area expansion and assimilate production in wheat (Triticum aestivum L.) growing under low phosphorus conditions. Plant Soil 200(2):227–240. https://doi.org/10.1023/A:1004310217694

    Article  Google Scholar 

  73. Aslam M, Iqbal A, Zamir MI, Mubeen M, Amin M (2011) Effect of different nitrogen levels and seed rates on yield and quality of maize fodder. Crop Environ 2:47–51

    Google Scholar 

  74. Amin MEH (2011) Effect of different nitrogen sources on growth, yield and quality of fodder maize (Zea mays L.). J Saudi Soc Agric Sci 10:17–23. https://doi.org/10.1016/j.jssas.2010.06.003

    Article  Google Scholar 

  75. Akram-Ghaderi F, Soltani A (2012) Leaf area relationships to plant vegetative characteristics in cotton (Gossypium hirsutum L.) grown in a temperate sub-humid environment. Int J Plant Prod 1(1):63–71. https://doi.org/10.22069/IJPP.2012.526

    Article  Google Scholar 

  76. Bachmann S, Wentzel S, Eichler-Löbermann B (2011) Codigested dairy slurry as a phosphorus and nitrogen source for Zea mays L. and Amaranthus cruentus L. J Plant Nutr Soil Sci 174:908–915. https://doi.org/10.1002/jpln.201000383

    Article  Google Scholar 

  77. Verma SS (1989) Effect of Nitrogen and seed rate and method of sowing on forage oat. Forage Res 15:29

    Google Scholar 

  78. Paul MJ, Stit M (1993) Effects on N and P deficiency on levels of carbohydrate respirators enzyme and metabolism in seeds of tobacco and their responses to exogenous sucrose. Plant Cell Environ 16:1047–1057

    Article  Google Scholar 

  79. Cakmak I, Hengelar C, Marshner H (1994) Partitioning of shoot and root dry matter and carbohydrate metabolism in bean plants suffering from P and K and Mg deficiency. J Exp Bot 45:1245–1254. https://doi.org/10.1093/jxb/45.9.1245

    Article  Google Scholar 

  80. Marschner H, Kirkby EA, Cakmak I (1996) Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J Exp Bot 47:1255–1263. https://doi.org/10.1093/jxb/47.Special_Issue.1255

    Article  Google Scholar 

  81. Zhang DY (1995) Analysis of growth redundancy of crop root system in semi-arid area. Acta Botanica Boreali-Occidentalia Sinaca 15:110–114

    Google Scholar 

  82. Ahmad R, Arshad M, Zahir ZA, Naveed M, Khalid M, Asghar HN (2008) Integrating N-enriched compost with biologically active substances for improving growth and yield of cereals. Pak J Bot 40:283–293

    Google Scholar 

  83. Castoldi G, Costa MSSDM, Costa LADM, Pivetta LA, Steiner F (2011) Culture systems and use of different fertilizers in the production of corn silage and grains. Acta Sci Agron 33:139–146. https://doi.org/10.4025/actasciagron.v33i1.766

    Article  Google Scholar 

  84. Hanway JJ (1993) Growth stages of corn (Zea mays L.). Agron J 55:487–492. https://doi.org/10.2134/agronj1963.00021962005500050024x

    Article  Google Scholar 

  85. Settimi JR, Maranville JW (1998) Carbon dioxide assimilation efficiency of maize leaves under nitrogen stress at different stages of plant development. Soil Sci Plant Anal 29:777–792

    Article  Google Scholar 

  86. Hay RE, Earley EB, DeTurk EE (1953) Concentration and translocation of nitrogen compounds in the corn plant (Zea mays) during grain development. Plant Physiol 28:606

    Article  Google Scholar 

  87. Soaud AA, Saleh ME, El-Tarabily KA, Sofian-Azirun M, Rahman MM (2011) Effect of elemental sulfur application on ammonia volatilisation from surface applied urea fertilizer to calcareous sandy soils. Aust J Crop Sci 5:611–619

    Google Scholar 

  88. Jones C, Brown BD, Engel R, Horneck D, Olson-Rutz K (2013) Nitrogen fertilizer volatilization, http://landresources.montana.edu/soilfertility/documents/PDF/pub/UvolfactEB0208.pdf. Accessed 2 Mar 2018

  89. Formowitz B, Fritz M (2010) Biogas digestates as organic fertilizer in different crop rotations. In 18th European biomass conference exhibition, Lyon, France

  90. Robinson D (1986) Compensatory changes in the partitioning of dry matter in relation to nitrogen uptake and optimal variations of growth. Ann Bot 58:841–848

    Article  Google Scholar 

  91. Hilbert DW (1990) Optimization of plant root:shoot ratios and internal nitrogen concentration. Ann Bot 66:91–99. https://doi.org/10.1093/oxfordjournals.aob.a088005

    Article  Google Scholar 

  92. Bonifas KD, Walters DT, Cassman KG, Lindquist JL (2005) Nitrogen supply affects root: shoot ratio in corn and velvetleaf (Abutilon theophrasti). Weed Sci 53:670–675. https://doi.org/10.1614/WS-05-002R.1

    Article  Google Scholar 

  93. Johansen A, Carter MS, Jensen ES, Hauggard-Nielsen H, Ambus P (2013) Effects of digestate from anaerobically digested cattle slurry and plant materials on soil microbial community and emission of CO2 and N2O. Appl Ecol 63:36–44. https://doi.org/10.1016/j.apsoil.2012.09.003

    Article  Google Scholar 

  94. Chau LH (1998) Biodigester effluent versus manure, from pigs or cattle, as fertilizer for duckweed (Lemna spp.). Livest Res Rural Dev 10(3):27. http://www.fao.org/ag/aGa/agap/FRG/lrrd/lrrd10/3/chau1.htm

    Google Scholar 

  95. Bange MP, Hammer GL, Rickert KG (1998) Temperature and sowing date affect the linear increase of sunflower harvest index. Agron J 90:324–328. https://doi.org/10.2134/agronj1998.00021962009000030002x

    Article  Google Scholar 

  96. Dobermann A (2007) Nutrient use efficiency—measurement and management. Workshop on Fertilizer Best Management Practices, Bélgica

  97. Caixeta DS, Fritsche-Neto R, Granato ISC, Oliveira LRD, Galvão JCC (2015) Early indirect selection for nitrogen use efficiency in maize. Revista Ciência Agronômica 46:369–378

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the following grant awards: UKIERI-UGC 086 Optimizing Phosphate Recovery from Community Bioenergy Systems: Low-Cost Sustainable Fertilizer Production for Rural Communities; UK Engineering and Physical Sciences Research Council—India—Department of Science and Technology EP/J000361/1 Rural Hybrid Energy Enterprise Systems. We thank Dr. Helen West, School of Biosciences and Prof Michele Clarke, School of Geography from University of Nottingham, UK, for their insightful comments, suggestions and help in analysis. Acknowledgement is due to ICAR Research Complex for North Eastern Hill Region, Umiam, Meghalaya, India, for their help in analysis. Last author acknowledges Tezpur University for granting Sabbatical leave to join University of South Africa as Visiting Professor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sampriti Kataki.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kataki, S., Hazarika, S. & Baruah, D.C. By-products of bioenergy systems (anaerobic digestion and gasification) as sources of plant nutrients: scope of processed application and effect on soil and crop. J Mater Cycles Waste Manag 21, 556–572 (2019). https://doi.org/10.1007/s10163-018-00816-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-018-00816-y

Keywords

Navigation