Advertisement

Journal of Material Cycles and Waste Management

, Volume 20, Issue 2, pp 1320–1336 | Cite as

Development of a recycling solution for waste thermoset material: waste source study, comminution scheme and filler characterization

  • Fabien Bernardeau
  • Didier Perrin
  • Anne-Sophie Caro-Bretelle
  • Jean-Charles Benezet
  • Patrick Ienny
ORIGINAL ARTICLE

Abstract

End of life electrical equipment is a continuously increasing source of waste in our modern society, and constitute an environmental problem. Understanding this type of waste flow is important to devise proper dismantlement and sorting strategies, and to maximize the material recovery rate and valorization. In this work, a waste pool constituted of electrical meter was studied. The specificities of this equipment in term of design were enlightened, and the overall material composition was determined. An emphasis was put on the characterization of the plastic fraction, both in term of plastic type and presence of regulated substances. It revealed that this fraction is mostly composed of phenolic molding compound (PMC), a thermoset material, which is troublesome in term of recycling. A material valorization solution through mechanical recycling is proposed, consisting in using PMC as functional filler in a thermoplastic matrix. A comminution scheme to obtain such filler is presented in this work, and the comminuted products are characterized. Through 2 or 3 steps of comminution, particle size below 50 µm can be obtained, which is expected to be a sufficient size for incorporation in a thermoplastic matrix.

Keywords

Recycling WEEE Phenolic molding compound Particle size distribution Comminution 

Notes

Acknowledgements

The authors wish to thank the companies APR2 and ENEDIS for their financial support to this work.

Supplementary material

10163_2017_698_MOESM1_ESM.docx (1.8 mb)
Supplementary material 1 (DOCX 1883 KB)

References

  1. 1.
    Ministère de l’environnement de l’énergie et de la mer (2014) Filières de responsabilité élargie du producteur (REP),” Developpement-durable.gouv, 2014. [Online]. http://www.developpement-durable.gouv.fr/Vehicules-Hors-d-Usage-VHU,12759.html [Accessed: 09-Dec-2016]
  2. 2.
    DIRECTIVE 2002/96/CE DU PARLEMENT EUROPÉEN ET DU CONSEIL (2003) du 27 janvier relative aux déchets d’équipements électriques et électroniques (DEEE) J Off l’Union Eur:24–38Google Scholar
  3. 3.
    Marques AC, Cabrera Marrero J-M, C de Fraga Malfatti (2013) A review of the recycling of non-metallic fractions of printed circuit boards. Springerplus, vol 2, p 521Google Scholar
  4. 4.
    Ademe (2016) Rapport annuel du registre des déchets d’equipements électriques et électroniquesGoogle Scholar
  5. 5.
    Hischier R, Wäger P, Gauglhofer J (2005) Does WEEE recycling make sense from an environmental perspective? Environ Impact Assess Rev 25(5):525–539CrossRefGoogle Scholar
  6. 6.
    Mar-Ortiz J, González-Velarde JL, Adenso-Díaz B (2011) Designing routes for WEEE collection: the vehicle routing problem with split loads and date windows. J Heuristics 19(2):103–127CrossRefGoogle Scholar
  7. 7.
    Zoeteman BCJ, Krikke HR, Venselaar J (2009) Handling WEEE waste flows: on the effectiveness of producer responsibility in a globalizing world. Int J Adv Manuf Technol 47(5–8):415–436Google Scholar
  8. 8.
    Veenstra A, Wang C, Fan W, Ru Y (2009) An analysis of E-waste flows in China. Int J Adv Manuf Technol 47(5–8):449–459Google Scholar
  9. 9.
    Streicher-Porte M, Bader H-P, Scheidegger R, Kytzia S (2007) Material flow and economic analysis as a suitable tool for system analysis under the constraints of poor data availability and quality in emerging economies. Clean Technol Environ Policy 9(4):325–345CrossRefGoogle Scholar
  10. 10.
    Kang H-Y, Schoenung JM (2006) Economic analysis of electronic waste recycling: modeling the cost and revenue of a materials recovery facility in California. Environ Sci Technol 40(5):1672–1680CrossRefGoogle Scholar
  11. 11.
    Georgiadis P, Besiou M (2009) Environmental and economical sustainability of WEEE closed-loop supply chains with recycling: a system dynamics analysis. Int J Adv Manuf Technol 47(5–8):475–493Google Scholar
  12. 12.
    Renteria A, Alvarez E, Perez J, Pozo D (2010) A methodology to optimize the recycling process of WEEE: case of television sets and monitors. Int J Adv Manuf Technol 54(5–8):789–800Google Scholar
  13. 13.
    Schlummer M, Gruber L, Mäurer A, Wolz G, van Eldik R (2007) Characterisation of polymer fractions from waste electrical and electronic equipment (WEEE) and implications for waste management. Chemosphere 67(9):1866–1876CrossRefGoogle Scholar
  14. 14.
    Maris E, Botané P, Wavrer P, Froelich D (2015) Characterizing plastics originating from WEEE: a case study in France. Miner Eng 76:28–37CrossRefGoogle Scholar
  15. 15.
    Stevens GC, Goosey M (2008) Materials used in manufacturing electrical and electronic products. In: Electronic Waste Management. Royal Society of Chemistry, Cambridge, pp 40–74CrossRefGoogle Scholar
  16. 16.
    Chancerel P, Rotter S (2009) Recycling-oriented characterization of small waste electrical and electronic equipment. Waste Manag 29(8):2336–2352CrossRefGoogle Scholar
  17. 17.
    Lambert AJD (2003) Disassembly sequencing: a survey. Int J Prod Res 41(16):3721–3759CrossRefzbMATHGoogle Scholar
  18. 18.
    Penev KD, de Ron AJ (1996) Determination of a disassembly strategy. Int J Prod Res 34(2):495–506CrossRefzbMATHGoogle Scholar
  19. 19.
    Das S, Yedlarajiah P, Narendra R, Sanchoy K, Das P, Yedlarajiah, Narendra R (2000) An approach for estimating the end-of-life product disassembly effort and cost. Int J Prod Res 38(3):657–673CrossRefzbMATHGoogle Scholar
  20. 20.
    Ma Y-S, Jun H-B, Kim H-W, Lee D-H (2011) Disassembly process planning algorithms for end-of-life product recovery and environmentally conscious disposal. Int J Prod Res 49(23):7007–7027CrossRefGoogle Scholar
  21. 21.
    Han HJ, Yu JM, Lee DH (2013) Mathematical model and solution algorithms for selective disassembly sequencing with multiple target components and sequence-dependent setups. Int J Prod Res 51(16):4997–5010CrossRefGoogle Scholar
  22. 22.
    Tsai W, Hung S (2009) Treatment and recycling system optimisation with activity-based costing in WEEE reverse logistics management: an environmental supply chain perspective. Int J Prod Res 47(19):5391–5420CrossRefzbMATHGoogle Scholar
  23. 23.
    González B, Adenso-Díaz B (2005) A bill of materials-based approach for end-of-life decision making in design for the environment. Int J Prod Res 43(10):2071–2099CrossRefzbMATHGoogle Scholar
  24. 24.
    Willems B, Dewulf W, Duflou JR (2006) Can large-scale disassembly be profitable? A linear programming approach to quantifying the turning point to make disassembly economically viable. Int J Prod Res 44(6):1125–1146CrossRefzbMATHGoogle Scholar
  25. 25.
    de Ron A, Penev K (1995) Disassembly and recycling of electronic consumer products: an overview. Technovation 15(6):363–374CrossRefGoogle Scholar
  26. 26.
    Bream CE, Hornsby PR (2001) Comminuted thermoset recyclate as a reinforcing Part I Characterisation of recyclate feedstocks. J Mater Sci 36:2965–2975CrossRefGoogle Scholar
  27. 27.
    Bream C, Hornsby P (2000) Structure development in thermoset recyclate-filled polypropylene composites. Polym Compos 21(3):417–435CrossRefGoogle Scholar
  28. 28.
    Bream CE, Hornsby PR (2001) Comminuted thermoset recyclate as a reinforcing filler for thermoplastics—part II: structure-property effects in polypropylene compositions. J Mater Sci 36:2977–2990CrossRefGoogle Scholar
  29. 29.
    Gröning M, Eriksson H, Hakkarainen M, Albertsson AC (2006) Phenolic prepreg waste as functional filler with antioxidant effect in polypropylene and polyamide-6. Polym Degrad Stab 91(8):1815–1823CrossRefGoogle Scholar
  30. 30.
    Dilhan M, Kalyon M, Hallouch, Fares N (1984) Recycling of thermosets as fillers. ANTEC 84:640–642Google Scholar
  31. 31.
    Cavalcante AP, Canto LB (2012) Use of industrial waste based on phenolic resin as filler for polypropylene. Polimeros 22(3):245–252Google Scholar
  32. 32.
    Chiang W-Y, Wu W-C, Pukánszky B (1994) Modification of polypropylene, blending with resole type phenol-formaldehyde resins. Eur Polym J 30(5):573–580CrossRefGoogle Scholar
  33. 33.
    Cui L, Wang S, Zhang Y, Zhang Y (2007) Dynamically cured polypropylene/Novolac blends compatibilized with maleic anhydride-g-polypropylene. J Appl Polym Sci 104(5):3337–3346CrossRefGoogle Scholar
  34. 34.
    Fu S-Y, Feng X-Q, Lauke B, Mai Y-W (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos Part B Eng 39(6):933–961CrossRefGoogle Scholar
  35. 35.
    Karger-Kocsis J (1995) Polypropylene: Structure, blends and compositesGoogle Scholar
  36. 36.
    Móczó J, Pukánszky B (2008) Polymer micro and nanocomposites: structure, interactions, properties. J Ind Eng Chem 14(5):535–563CrossRefGoogle Scholar
  37. 37.
    Waterman NA, Trubshaw R, Pye AM (1978) Filled thermoplastic materials part I: fillers and compounding. Mater Eng Appl. 1:74–79Google Scholar
  38. 38.
    Costa L, Rossi L, Di Montelera G, Camino ED, Weil, Pearce EM (1998) Flame-retardant properties of phenol—formaldehyde-type resins and triphenyl phosphate in styrene—acrylonitrile copolymers. J Appl Polym Sci 68:1067–1076CrossRefGoogle Scholar
  39. 39.
    Seo K, Kim J, Bae J-Y (2006) Towards the development of thermally latent novolac-based char formers for ABS resins. Polym Degrad Stab 91(7):1513–1521CrossRefGoogle Scholar
  40. 40.
    Hu X, Guo Y, Chen L, Wang X, Li L, Wang Y (2012) A novel polymeric intumescent flame retardant: synthesis, thermal degradation mechanism and application in ABS copolymer. Polym Degrad Stab 97(9):1772–1778CrossRefGoogle Scholar
  41. 41.
    Lee K, Yoon K, Kim J, Bae J, Yang J, Hong S (2003) Effect of novolac phenol and oligomeric aryl phosphate mixtures on flame retardance enhancement of ABS. Polym Degrad Stab 81(1):173–179CrossRefGoogle Scholar
  42. 42.
    Levchik SV, Bright DA, Alessio GR, Dashevsky S (2002) Synergistic action between aryl phosphates and phenolic resin in PBT. Polym Degrad Stab 77(2):267–272CrossRefGoogle Scholar
  43. 43.
    Perrin D, Guillermain C, Bergeret A, Lopez-Cuesta J-M, Tersac G (2006) SMC composites waste management as reinforcing fillers in polypropylene by combination of mechanical and chemical recycling processes. J Mater Sci. 41(12):3593–3602CrossRefGoogle Scholar
  44. 44.
    Palmer J, Ghita OR, Savage L, Evans KE (2009) Successful closed-loop recycling of thermoset composites. Compos Part A Appl Sci Manuf 40(4):490–498CrossRefGoogle Scholar
  45. 45.
    Kouparitsas CE, Kartalis CN, Varelidis PC, Tsenoglou CJ, Papaspyrides CD (2002) Recycling of the fibrous fraction of reinforced thermoset composites. Polym Compos 23(4):682–689CrossRefGoogle Scholar
  46. 46.
    Bruyère D, Simon S, Haas H, Conte T, Menad N-E (2016) Cryogenic ball milling: a key for elemental analysis of plastic-rich automotive shedder residue. Powder Technol 294:454–462CrossRefGoogle Scholar
  47. 47.
    Gente V, La Marca F, Lucci F, Massacci P, Pani E (2004) Cryo-comminution of plastic waste. Waste Manag 24(7):663–672CrossRefGoogle Scholar
  48. 48.
    Schmidt J, Plata M, Tröger S, Peukert W (2012) Production of polymer particles below 5 μm by wet grinding. Powder Technol 228:84–90CrossRefGoogle Scholar
  49. 49.
    Hedayati M, Salehi M, Bagheri R, Panjepour M, Maghzian A (2011) Ball milling preparation and characterization of poly (ether ether ketone)/surface modified silica nanocomposite. Powder Technol 207(1):296–303CrossRefGoogle Scholar
  50. 50.
    Molina-Boisseau S, Le Bolay N, Pons MN (2002) Fragmentation mechanism of poly(vinyl acetate) particles during size reduction in a vibrated bead mill. Powder Technol 123(2–3):282–291CrossRefGoogle Scholar
  51. 51.
    Molina-Boisseau S, Le Bolay N (2000) Size reduction of polystyrene in a shaker bead mill—kinetic aspects. Chem Eng J 79(1):31–39CrossRefGoogle Scholar
  52. 52.
    Jonna S, Lyons J (2005) Processing and properties of cryogenically milled post-consumer mixed plastic waste. Polym Test 24(4):428–434CrossRefGoogle Scholar
  53. 53.
    Molina-Boisseau S, Bolay NL (2002) Characterisation of the physicochemical properties of polymers ground in a vibrated bead mill. Powder Technol 128(2):99–106CrossRefGoogle Scholar
  54. 54.
    Kang H-Y, Schoenung JM (2005) Electronic waste recycling: a review of U.S. infrastructure and technology options. Resour Conserv Recycl 45(4):368–400CrossRefGoogle Scholar
  55. 55.
    PlasticsEurope (2014) Automobile, Avec les plastiques, le monde bougeGoogle Scholar
  56. 56.
    Ausset S (2013) Procédé de recyclage de mélanges ABS-PC issus de déchets d’equipements électriques et électroniques (DEEE), vol 1. Université Bordeaux, BordeauxGoogle Scholar
  57. 57.
    “DIRECTIVE 2002/95/CE DU PARLEMENT EUROPÉEN ET DU CONSEIL (2003) du 27 janvier 2003 relative à la limitation de l’utilisation de certaines substances dangereuses dans les équipements électriques et électroniques. J Off l’Union EurGoogle Scholar
  58. 58.
    Ma C, Yu J, Wang B, Song Z, Xiang J, Hu S, Su S, Sun L (2016) Chemical recycling of brominated flame retarded plastics from e-waste for clean fuels production: A review. Renew Sustain Energy Rev 61:433–450CrossRefGoogle Scholar
  59. 59.
    Chevalier M (1991) Phénoplastes ou phénols-formols. Tech. l’ingénieurGoogle Scholar
  60. 60.
    Miller R, Mark H, Gaylord N (1966) Phenolic resins. Encycl Polym Sci Technol 7(11):322–368Google Scholar
  61. 61.
    Tinke AP, Carnicer A, Govoreanu R, Scheltjens G, Lauwerysen L, Mertens N, Vanhoutte K, Brewster ME (2008) Particle shape and orientation in laser diffraction and static image analysis size distribution analysis of micrometer sized rectangular particles. Powder Technol.186(2):154–167CrossRefGoogle Scholar
  62. 62.
    Bernardeau F, Perrin D, Caro-Bretelle A-S, Ienny P (2017) Valorization of waste thermoset material as a filler in thermoplastic: mechanical properties of phenolic molding compound waste filled PP composites. J Appl Polym Sci (accepted publication in progress, Oct. 2017) Google Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Fabien Bernardeau
    • 1
  • Didier Perrin
    • 1
  • Anne-Sophie Caro-Bretelle
    • 1
  • Jean-Charles Benezet
    • 1
  • Patrick Ienny
    • 1
  1. 1.C2MA, Ecole des Mines d’AlèsAles CedexFrance

Personalised recommendations