Synthesis and characterization of drinking water treatment plant sludge-incorporated Portland cement

  • Mohammed Dahhou
  • Mohammed El Moussaouiti
  • Muhammad Azeem Arshad
  • Souad Moustahsine
  • Mohamed Assafi
ORIGINAL ARTICLE
  • 50 Downloads

Abstract

Kinetic analysis of thermally activated phase transformations in drinking water treatment plant (DWTP) sludge suggests its applicability in the materials of construction. The suggested prediction has already been verified on the sludge-based bricks. The present study deals with incorporating the same sludge in the raw meal for the synthesis of Portland cement clinkers. For this purpose, two raw meals are prepared with varying sludge loadings. The sludge effect on reactivity of the crude mixture is evaluated on the basis of the free lime content sintered at various elevated temperatures. The results of chemical and mineralogical and scanning electron microscopic analyses reveal fine mineralogical contents of Portland clinkers calcined at 1450 and 1500 °C. Moreover, the cements prepared from these clinkers by the introduction of certain proportions of gypsum, depict significant durability. The obtained results elucidate that the studied DWTP sludge-incorporated Portland cement shows considerable potential to be commercialized.

Keywords

DWTP sludge Clinker Cement Characterization Valorization 

Notes

Acknowledgements

The authors acknowledge support from “National Office of electricity and drinking water” (ONEE) for supplying drinking water sludge.

References

  1. 1.
    Yano J, Shin-ichi S (2016) Waste prevention indicators and their implications from a lifecycle perspective: a review. J Mater Cycles Waste Manag 18(1):38–56. doi: 10.1016/j.wasman.2015.06.012 CrossRefGoogle Scholar
  2. 2.
    Donatello S, Cheeseman CR (2013) Recycling and recovery routes for incinerated sewage sludge ash (ISSA): a review. Waste Manag 3(11):2328–2340. doi: 10.1016/j.wasman.2013.05.024 CrossRefGoogle Scholar
  3. 3.
    Rodrigues LP, Holanda JNF (2015) Recycling of water treatment plant waste for production of soil cement bricks. Proced Mater Sci 8:197–202. doi: 10.1016/j.mspro.2015.04.064 CrossRefGoogle Scholar
  4. 4.
    Benlalla A, El moussaouiti M, Dahhou M et al (2015) Utilization of water treatment plant sludge in structural ceramics bricks. Appl Clay Sci 118:171–177. doi: 10.1016/j.clay.2015.09.012 CrossRefGoogle Scholar
  5. 5.
    Dahhou M, El Moussaouiti M, Khachani N et al (2012) Physico-chemical characterization of sludge from a unit water drinking production. Matec Web Conf. doi: 10.1051/matecconf/20120201017 Google Scholar
  6. 6.
    Lin Q, Peng H, Zhong S et al (2015) Synthesis, characterization, and secondary sludge dewatering performance of a novel combined silicon–aluminum–iron–starch flocculant. J Hazard Mater 285:199–206. doi: 10.1016/j.jhazmat.2014.12.005 CrossRefGoogle Scholar
  7. 7.
    Zhou Z, Yang Y, Li X et al (2016) The removal characteristics of natural organic matter in the recycling of drinking water treatment sludge: role of solubilized organics. Ultrason Sonochem 28:259–268. doi: 10.1016/j.ultsonch.2015.07.016 CrossRefGoogle Scholar
  8. 8.
    Dahhou M, El Moussaouiti M, Benlalla A et al (2016) Structural aspects and thermal degradation kinetics of water treatment plant sludge of moroccan capital. Waste Biomass Valor 7(5):1177–1187. doi: 10.1007/s12649-016-9513-5 CrossRefGoogle Scholar
  9. 9.
    Chiang KY, Chou PH, Hua CR et al (2009) Lightweight bricks manufactured from water treatment sludge and rice husks. J Hazard Mater 171:76–82. doi: 10.1016/j.jhazmat.2009.05.144 CrossRefGoogle Scholar
  10. 10.
    Xu GR, Zou JL, Li GB (2009) Ceramsite obtained from water and wastewater sludge and its characteristics affected by Fe2O3, CaO and MgO. J Hazard Mater 165:995–1001. doi: 10.1016/j.jhazmat.2008.10.113 CrossRefGoogle Scholar
  11. 11.
    Toya T, Nakamura A, Kameshima Y et al (2007) Glass-ceramics prepared from sludge generated by a water purification plant. Ceram Int 33(4):573–577. doi: 10.1016/j.ceramint.2005.11.009 CrossRefGoogle Scholar
  12. 12.
    Sotero-Santosa RB, Odete R, Povinelli J (2007) Toxicity of ferric chloride sludge to aquatic organisms. Chemosphere 68(4):628–636. doi: 10.1016/j.chemosphere.2007.02.049 CrossRefGoogle Scholar
  13. 13.
    Bourgeois JC, Walsh ME, Gagnon GA (2004) Treatment of drinking water residuals: comparing sedimentation and dissolved air flotation performance with optimal cation ratios. Water Res 38(5):1173–1182. doi: 10.1016/j.watres.2003.11.018 CrossRefGoogle Scholar
  14. 14.
    Liew AG, Idris A, Wong CH et al (2004) Incorporation of sewage sludge in clay brick and its characterization. Waste Manag Res 22(4):226–233. doi: 10.1177/0734242X04044989 CrossRefGoogle Scholar
  15. 15.
    Ramadan MO, Fouad HA, Hassanain AM (2008) Reuse of water treatment plant sludge in brick manufacturing. J Appl Sci Res 4(10):1223–1229Google Scholar
  16. 16.
    Lin KL, Lin CY (2005) Hydration characteristics of waste sludge ash utilized as raw cement material. Cement Concr Res 35(10):1999–2007. doi: 10.1016/j.cemconres.2005.06.008 CrossRefGoogle Scholar
  17. 17.
    Lin KL, Chiang KY, Lin CY (2005) Hydration characteristics of waste sludge ash that is reused in eco-cement clinkers. Cement Concr Res 35(6):1074–1081. doi: 10.1016/j.cemconres.2004.11.014 CrossRefGoogle Scholar
  18. 18.
    Rodríguez NH, Martínez-Ramírez S, Blanco-Varela MT et al (2010) Re-use of drinking water treatment plant (DWTP) sludge: characterization and technological behaviour of cement mortars with atomized sludge additions. Cement Concr Res 40(5):778–786. doi: 10.1016/j.cemconres.2009.11.012 CrossRefGoogle Scholar
  19. 19.
    Hegazy BE, Fouad HA, Hassanain AM (2012) Incorporation of water sludge, silica fume, and rice husk ash in brick making. Adv Environ Res 1:83–96. doi: 10.12989/aer.2012.1.1.083 CrossRefGoogle Scholar
  20. 20.
    Miura K, Sato K, Suzuki T et al (2001) Thermodynamic consideration on the kiln dust generated from eco-cement production. Mater Trans 42(12):2523–2530. doi: 10.2320/matertrans.42.2523 CrossRefGoogle Scholar
  21. 21.
    EN 196-1:2005 (E) (2005) Methods of testing cement (part 1): determination of strength [S]. British Standards Institute/The European Committee for Standardisation, ChiswickGoogle Scholar
  22. 22.
    Hasanbeigi A, Price L, Lin E (2012) Emerging energy-efficiency and CO2 emission reduction technologies for cement and concrete production: a technical review. Renew Sustain Energy Rev 16(8):6220–6238. doi: 10.1016/j.rser.2012.07.019 CrossRefGoogle Scholar
  23. 23.
    Ghosh SN (1983) Advances in cement technology: critical reviews and case studies on manufacturing, quality control, optimization and use. Pergamon Press, OxfordGoogle Scholar
  24. 24.
    Taylor HFW (1997) Cement chemistry, 2nd edn. Thomas Telford Publishing, LondonCrossRefGoogle Scholar
  25. 25.
    Schepper M-D, Buysser K-D, Driessche IV (2013) The regeneration of cement out of completely recyclable concrete: clinker production evaluation. Constr Build Mater 38:1001–1009. doi: 10.1016/j.conbuildmat.2012.09.061 CrossRefGoogle Scholar
  26. 26.
    Tsakiridis PE, Oustadakis P, Agatzini-Leonardou S (2014) Black dross leached residue: an alternative raw material for portland cement clinker. Waste Biomass Valor 5(6):973–983. doi: 10.1007/s12649-014-9313-8 CrossRefGoogle Scholar
  27. 27.
    Vilaplana AS-D-G, Ferreira VJ, López-Sabirón AM (2015) Utilization of ladle furnace slag from a steelwork for laboratory scale production of portland cement. Constr Build Mater 94:837–843. doi: 10.1016/j.conbuildmat.2015.07.075 CrossRefGoogle Scholar
  28. 28.
    Lam CHK, Barford JP, McKay G et al (2011) Utilization of municipal solid waste incineration ash in portland. Clean Tech Environ Policy 13(4):607–615. doi: 10.1007/s10098-011-0367-z CrossRefGoogle Scholar
  29. 29.
    Wang FZ, Shang DC, Wang MG et al (2016) Incorporation and substitution mechanism of cadmium in cement clinker. J Clean Prod 112:2292–2299. doi: 10.1016/j.jclepro.2015.09.127 CrossRefGoogle Scholar
  30. 30.
    Stutzman P, Heckert A, Tebbe A et al (2014) Uncertainty in Bogue-calculated phase composition of hydraulic cements. Cement Concr Res 61–62:40–48. doi: 10.1016/j.cemconres.2014.03.007 CrossRefGoogle Scholar
  31. 31.
    Hewlett PC (1998) Lea’s chemistry of cement and concrete, 4th edn. Elsevier Butterworth-Heinemann, OxfordGoogle Scholar
  32. 32.
    Vangelatos I, Angelopoulos GN, Boufounos D (2009) Utilization of ferroalumina as aw material in the production of ordinary portland cement. J Hazard Mater 168(1):473–478. doi: 10.1016/j.jhazmat.2009.02.049 CrossRefGoogle Scholar
  33. 33.
    Kakali G, Tsivilis S, Kolovos K et al (2003) Use of secondary mineralizing raw materials in cement production. The case study of a stibnite ore. Mater Lett 57(20):3117–3123. doi: 10.1016/S0167-577X(03)00007-7 CrossRefGoogle Scholar
  34. 34.
    Stephan D, Wistuba S (2006) Crystal structure refinement and hydration behaviour of 3CaO·SiO2 solid solutions with MgO, Al2O3 and Fe2O3. J Eur Ceram Soc 26:141–148. doi: 10.1016/j.jeurceramsoc.2004.10.031 CrossRefGoogle Scholar
  35. 35.
    Dunstetter F, Noirfontaine MN, Courtial M (2006) Polymorphism of tricalcium silicate, the major compound of portland cement clinker: structural data: review and unified analysis. Cement Concr Res 36(1):39–53. doi: 10.1016/j.cemconres.2004.12.003 CrossRefGoogle Scholar
  36. 36.
    Opoczky L, Gavel V (2004) Effect of certain trace elements on the grindability of cement clinkers in the connection with the use of wastes. Int J Miner Process 74S:S129–S136. doi: 10.1016/j.minpro.2004.07.020 CrossRefGoogle Scholar
  37. 37.
    Tsurumi T, Hirano Y, Kato H et al (1994) Crystal structure and hydration of belite. Ceram Trans 40:19–25Google Scholar
  38. 38.
    Mondal P, Jefferey JW (1975) The crystal structure of tricalcium aluminate, Ca3Al2O6. Acta Cryst B 31:17–30CrossRefGoogle Scholar
  39. 39.
    Kacimi L, Simon-Masseron A, Salem S et al (2009) Synthesis of belite cement clinker of high hydraulic reactivity. Cement Concr Res 39(7):559–565. doi: 10.1016/j.cemconres.2009.02.004 CrossRefGoogle Scholar
  40. 40.
    Hong H, Fu Z, Min X (2001) Effect of cooling performance on the mineralogical character of portland cement clinker. Cement Concr Res 31(2):287–290. doi: 10.1016/S0008-8846(00)00445-2 CrossRefGoogle Scholar
  41. 41.
    Kacimi L, Simon-Masseron A, Ghomari A et al (2006) Influence of NaF, KF and CaF2 addition on the clinker burning temperature and its properties. CR Chimie 9(1):154–163. doi: 10.1016/j.crci.2005.10.001 CrossRefGoogle Scholar
  42. 42.
    AENOR EN 197–1 (2000) Cement composition, specifications and conformity criteria for common cements. European StandardGoogle Scholar
  43. 43.
    Atmaca A, Kanoglu M (2012) Reducing energy consumption of a raw mill in cement industry. Energy 42:261–269. doi: 10.1016/j.energy.2012.03.060 CrossRefGoogle Scholar
  44. 44.
    Madlool NA, Saidur R, Hossain MS et al (2011) A critical review on energy use and savings in the cement industries. Renew Sustain Energy Rev 15:2042–2060. doi: 10.1016/j.rser.2011.01.005 CrossRefGoogle Scholar
  45. 45.
    Li H, Zhao J, Huang Jiang Z et al (2016) Investigation on the potential of waste cooking oil as a grinding aid in portland cement. J Environ Manag 184:545–551. doi: 10.1016/j.jenvman.2016.10.027 CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  • Mohammed Dahhou
    • 1
  • Mohammed El Moussaouiti
    • 1
  • Muhammad Azeem Arshad
    • 2
  • Souad Moustahsine
    • 3
  • Mohamed Assafi
    • 3
  1. 1.Laboratory of Materials, Nanotechnology and Environment, Department of Chemistry, Faculty of SciencesUniversity of Mohammed V RabatRabatMorocco
  2. 2.Laboratory of Composite Materials, Polymers and Environment, Department of Chemistry, Faculty of SciencesUniversity of Mohammed VRabatMorocco
  3. 3.National Office of Electricity and Drinking Water, International Water and Sanitation InstituteRabatMorocco

Personalised recommendations