Journal of Material Cycles and Waste Management

, Volume 20, Issue 1, pp 414–420 | Cite as

Degradation of pet copolyesters under real and laboratory composting conditions

  • Magdalena Vaverková
  • Dana Adamcová
  • Lenka Kotrchová
  • Jan Merna
  • Soňa Hermanová


The present work is aimed on the study of degradation of poly(ethylene terephthalate-co-lactate) copolyesters, prepared by chemical modification of PET waste beverage bottles using l-lactic acid, under laboratory (bioreactor) and natural (Central Composting Plant in Brno, Czech Republic) composting conditions. The structure of solid residues after degradation was analyzed by IR, NMR, thermogravimetric (TGA) methods, and size exclusion chromatography in chloroform and the residues rich on aromatic units were analyzed in CHCl3/HFIP solutions. Sample with 57 mol% of aliphatic units showed the highest degree of degradation with mass loss of about 90% independently of composting conditions. The samples with 57 and 60 mol% of aromatic units reached 68 and 51% degradation in the compost pile and only 39 and 5% in laboratory bioreactor. Gravimetric analysis along with molar mass distribution measurement showed that laboratory-level composting study provides more consistent and defined results. However, it should be accompanied with tests performed under real conditions for the purpose of biodegradability evaluation of polymeric materials with varying composition.


PET waste Copolyesters Hydrolysis Composting 



Authors thank to specific University Research No. 20/2015 for financial support.

Supplementary material

10163_2017_595_MOESM1_ESM.pdf (507 kb)
Supplementary material 1 (PDF 506 KB)


  1. 1.
    Burat F, Güney A, Olgaç Kangal M (2009) Selective separation of virgin and post-consumer polymers (PET and PVC) by flotation method. Waste Manag 29:1807–1813. doi: 10.1016/j.wasman.2008.12.018 CrossRefGoogle Scholar
  2. 2.
    Sinha V, Patel M, Patel J (2010) Pet waste management by chemical recycling: a review. J Polym Environ 18:8–25. doi: 10.1007/s10924-008-0106-7 CrossRefGoogle Scholar
  3. 3.
    Zhang H, Wen Z-G (2014) The consumption and recycling collection system of PET bottles: a case study of Beijing, China. Waste Manag 34:987–998. doi: 10.1016/j.wasman.2013.07.015 CrossRefGoogle Scholar
  4. 4.
    Khoonkari M, Haghighi AH, Sefidbakht Y, Shekoohi K, Ghaderian A (2015) Chemical recycling of PET wastes with different catalysts. Int J Polym Sci 2015:1–11. doi: 10.1155/2015/124524 CrossRefGoogle Scholar
  5. 5.
    Shukla SR, Harad AM, Jawale LS (2008) Recycling of waste PET into useful textile auxiliaries. Waste Manag 28:51–56. doi: 10.1016/j.wasman.2006.11.002 CrossRefGoogle Scholar
  6. 6.
    George N, Kurian T (2014) Recent developments in the chemical recycling of postconsumer poly(ethylene terephthalate) waste. Ind Eng Chem Res 53:14185–14198. doi: 10.1021/ie501995m CrossRefGoogle Scholar
  7. 7.
    Vitásek J, Šašek V, Prokopová I (2012) PET from used beverage bottles: a material for preparation of biologically degradable copolyesters. J Polym Environ 20:618–625. doi: 10.1007/s10924-012-0423-8 CrossRefGoogle Scholar
  8. 8.
    Acar I, Kaşgöz A, Özgümüş S, Orbay M (2006) Modification of waste poly(ethylene terephthalate) (PET) by using poly(l-lactic acid) (PLA) and hydrolytic stability. Polym Plast Technol Eng 45:351–359. doi: 10.1080/03602550600553267 CrossRefGoogle Scholar
  9. 9.
    Hermanová S, Šmejkalová P, Merna J, Zarevúcka M (2015) Biodegradation of waste PET based copolyesters in thermophilic anaerobic sludge. Polym Degrad Stab 111:176–184. doi: 10.1016/j.polymdegradstab.2014.11.007 CrossRefGoogle Scholar
  10. 10.
    Ki HC, Ok Park O (2001) Synthesis, characterization and biodegradability of the biodegradable aliphatic–aromatic random copolyesters. Polymer 42:1849–1861. doi: 10.1016/S0032-3861(00)00466-3 CrossRefGoogle Scholar
  11. 11.
    Turečková J, Prokopová I, Niklová P, Šimek J, Šmejkalová P, Keclík F (2008) Biodegradable copolyester/starch blends—preparation, mechanical properties, wettability, biodegradation course. Polimery 53:639–643Google Scholar
  12. 12.
    Standardization IOf. ČSN EN 14806 Norm (2006) Packaging—preliminary evaluation of the disintegration of the packaging materials under simulated composting conditions in a laboratory scale testGoogle Scholar
  13. 13.
    Vaverková M, Toman F, Adamcová D, Kotovicová J (2012) Study of the biodegrability of degradable/biodegradable plastic material in a controlled composting environment. Ecol Chem Eng S 19:347–358. doi: 10.2478/v10216-011-0025-8 Google Scholar
  14. 14.
    Adamcová D, Vaverková M, Daria, Hermanová S, Voběrková S (2015) Ecotoxicity of composts containing aliphatic–aromatic copolyesters. Pol J Environ Stud 24:1497–1505. doi: 10.15244/pjoes/31227 CrossRefGoogle Scholar
  15. 15.
    Olewnik E, Czerwiński W, Nowaczyk J, Sepulchre M-O, Tessier M, Salhi S et al (2007) Synthesis and structural study of copolymers of l-lactic acid and bis(2-hydroxyethyl terephthalate). Eur Polym J 43:1009–1019. doi: 10.1016/j.eurpolymj.2006.11.025 CrossRefGoogle Scholar
  16. 16.
    Weisskopf K (1988) Characterization of polyethylene terephthalate by gel permeation chromatography (GPC). J Polym Sci Part A Polym Chem 26:1919–1935. doi: 10.1002/pola.1988.080260718 CrossRefGoogle Scholar
  17. 17.
    Bågstam G (1978) Population changes in microorganisms during composting of spruce-bark. Eur J Appl Microbiol 5:315–330CrossRefGoogle Scholar
  18. 18.
    Tessier M, Fradet A (2003) Determination of the degree of randomness in condensation copolymers containing both symmetrical and unsymmetrical monomer units: a theoretical study. e-Polymers 030:1–7. doi: 10.1515/epoly.2003.3.1.391 Google Scholar
  19. 19.
    Rusu E, Drobota M, Barboiu V (2008) Structural investigations of amines treated polyester thin films by FTIR-ATR spectroscopy. J Optoelectron Adv M 10:377–381Google Scholar

Copyright information

© Springer Japan 2017

Authors and Affiliations

  • Magdalena Vaverková
    • 1
  • Dana Adamcová
    • 1
  • Lenka Kotrchová
    • 2
  • Jan Merna
    • 2
  • Soňa Hermanová
    • 2
  1. 1.Department of Applied and Landscape Ecology, Faculty of AgronomyMendel University in BrnoBrnoCzech Republic
  2. 2.Department of Polymers, Faculty of Chemical TechnologyUniversity of Chemistry and Technology PraguePragueCzech Republic

Personalised recommendations