Thermodynamic analysis of metals recycling out of waste printed circuit board through secondary copper smelting

  • Maryam Ghodrat
  • Muhammad Akbar Rhamdhani
  • Abdul Khaliq
  • Geoffrey Brooks
  • Bijan Samali
ORIGINAL ARTICLE

Abstract

In this paper, a detailed thermodynamic analysis of processing of electronic waste (e-waste), particularly printed circuit boards (PCB), through secondary copper recycling (black copper smelting), was carried out. The mass balance flowsheets of two scenarios, i.e., the case of secondary copper recycling with (SCE1) and without (SCE2) addition of PCBs, have been developed and compared. From the perspective of recovery of copper (Cu), gold (Au), and silver (Ag); the thermodynamic analysis predicted that the process conditions at temperature of 1300 °C and oxygen partial pressure (pO2) of 10–8 atm are suitable for PCB processing through secondary copper smelting route. Under these conditions, no solid phases were predicted to form when the PCB addition is below 50 wt%. High PCB addition was predicted to produce high volume of slag in the process and more pollutants in the gas phase (Br-based gaseous compounds). The chemistry of the slag was also predicted to change that is shifting the liquidus temperature to a higher value due to the presence of aluminium (Al), silica (SiO2), and titanium dioxide (TiO2) in the feed coming from the PCB. The carbon content of the PCB potentially supplies additional heat and reductant (CO) in the process hence can partially replace coke in the feed material. The predicted recoveries of copper (Cu), gold (Au), and silver (Ag) from e-waste were 83.3, 96.5, and 88.5 wt% respectively.

Keywords

Thermodynamic analysis Waste PCBs Secondary copper smelting Precious metals 

References

  1. 1.
    Xue M, Kendall A, Xu Z, Schoenung JM (2015) Waste management of printed wiring boards: a life cycle assessment of the metals recycling chain from liberation through refining. Environ Sci Technol 49:940–947. doi:10.1021/es504750q CrossRefGoogle Scholar
  2. 2.
    Heacock M, Kelly CB, Suk WA (2016) E-waste: the growing global problem and next steps. Rev Environ Health 31:131–135CrossRefGoogle Scholar
  3. 3.
    Davenport WGL, King M, Schlesinger M, Biswas AK (2002) Extractive metallurgy of copper. Pergamon Press, OxfordGoogle Scholar
  4. 4.
    Institute of Scrap Recycling Industries (ISRI) (2003) Scrap recycling: where tomorrow begins. ISRI, Washington, DC, pp 16–24Google Scholar
  5. 5.
    Anindya A, Swinbourne DR, Reuter MA, Matusewicz RW (2013) Distribution of elements between copper and FeOx–CaO–SiO2 slags during pyrometallurgical processing of WEEE. Miner Process Extr Metall 122:165–173. doi:10.1179/1743285513Y.0000000043 CrossRefGoogle Scholar
  6. 6.
    Hoffmann JE, n.d. Recovering precious metals from electronic scrap. JOM 44:43–48. doi:10.1007/BF03222275
  7. 7.
    Sun J, Wang W, Liu Z, Ma C (2011) Recycling of waste printed circuit boards by microwave-induced pyrolysis and featured mechanical processing. Ind Eng Chem Res 50:11763–11769. doi:10.1021/ie2013407 CrossRefGoogle Scholar
  8. 8.
    Ghodrat M, Rhamdhani MA, Brooks G, Masood S, Corder G (2016) Techno economic analysis of electronic waste processing through black copper smelting route. J Clean Prod. doi:10.1016/j.jclepro.2016.03.033 Google Scholar
  9. 9.
    Davis G, Herat S (2008) Electronic waste: The local government perspective in Queensland, Australia. Resour. Conserv. Recycl 52:1031–1039. doi:10.1016/j.resconrec.2008.04.001 CrossRefGoogle Scholar
  10. 10.
    Golev A, Schmeda-Lopez DR, Smart SK, Corder GD, McFarland EW (2016) Where next on e-waste in Australia? Waste Manag 58:348–358. doi:10.1016/j.wasman.2016.09.025 CrossRefGoogle Scholar
  11. 11.
    EEA (2013) Managing municipal solid waste—a review of achievements in 32 European countries. EEA Report No 2/2013, European Environment AgencyGoogle Scholar
  12. 12.
    Randell P, Pickin J, Grant B, (2014) Waste Generation and Resource Recovery in Australia. Blue Environment Pty Ltd; Department of Sustainability, Environment, Water, Population and Communities. http://www.environment.gov.au/resource/waste-generation-and-resource-recovery-australia-report-anddata-workbooks. Available online.
  13. 13.
    Khaliq A, Rhamdhani MA, Brooks G, Masood S (2014) Metal extraction processes for electronic waste and existing industrial routes: a review and Australian perspective. Resources 3:152–179. doi:10.3390/resources3010152
  14. 14.
    Nakajima K, Takeda O, Miki T, Matsubae K, Nakamura S, Nagasaka T (2010) Thermodynamic analysis of contamination by alloying elements in aluminum recycling. Environ Sci Technol 44:5594–5600. doi:10.1021/es9038769 CrossRefGoogle Scholar
  15. 15.
    Castro MBG, Remmerswaal JAM, Reuter MA, Boin UJM (2004) A thermodynamic approach to the compatibility of materials combinations for recycling. Resour Conserv Recycl 43:1–19. doi:10.1016/j.resconrec.2004.04.011 CrossRefGoogle Scholar
  16. 16.
    Worrel E, Reuter MA (2014) Handbook of recycling. Elsevier BV, Amsterdam, 595 pGoogle Scholar
  17. 17.
    Recalde K, Wang J, Graedel TE (2008) Aluminium in-use stocks in the state of Connecticut. Resour Conserv Recycl 52:1271–1282. doi:10.1016/j.resconrec.2008.07.006 CrossRefGoogle Scholar
  18. 18.
    Nakajima K, Yokoyama K, Nagasaka T (2008) Substance flow analysis of manganese associated with iron and steel flow in Japan. ISIJ Int 48:549–553. doi:10.2355/isijinternational.48.549 CrossRefGoogle Scholar
  19. 19.
    Wang T, Müller DB, Graedel TE (2007) Forging the anthropogenic iron cycle. Environ Sci Technol 41:5120–5129. doi:10.1021/es062761t CrossRefGoogle Scholar
  20. 20.
    Graedel TE, Bertram M, Kapur A, Reck B, Spatari S (2004) Exploratory data analysis of the multilevel anthropogenic copper cycle. Environ Sci Technol 38:1253–1261. doi:10.1021/es0304345 CrossRefGoogle Scholar
  21. 21.
    Johnson J, Schewel L, Graedel TE (2006) The contemporary anthropogenic chromium cycle. Environ Sci Technol 40:7060–7069. doi:10.1021/es060061i CrossRefGoogle Scholar
  22. 22.
    Ayres R, Talens Peiró L (2013) Material efficiency: rare and critical metals. Phil Trans R Soc A 371:20110563. doi:10.1098/rsta.2011.0563
  23. 23.
    Wu Y, Yin X, Zhang Q, Wang W, Mu X (2014) The recycling of rare earths from waste tricolor phosphors in fluorescent lamps: A review of processes and technologies. Resour Conserv Recycl 88:21–31. doi:10.1016/j.resconrec.2014.04.007 CrossRefGoogle Scholar
  24. 24.
    Binnemans K, Jones PT (2014) Perspectives for the recovery of rare earths from end-of-life fluorescent lamps. J Rare Earths 32:195–200. doi:10.1016/S1002-0721(14)60051-X CrossRefGoogle Scholar
  25. 25.
    Van Eygen E, De Meester S, Tran HP, Dewulf J (2016) Resource savings by urban mining: the case of desktop and laptop computers in Belgium. Resour Conserv Recycl 107:53–64. doi:10.1016/j.resconrec.2015.10.032 CrossRefGoogle Scholar
  26. 26.
    Oguchi M, Murakami S, Sakanakura H, Kida A, Kameya T (2011) A preliminary categorization of end-of-life electrical and electronic equipment as secondary metal resources. Waste Manag 31:2150–2160. doi:10.1016/j.wasman.2011.05.009 CrossRefGoogle Scholar
  27. 27.
    Guo C, Wang H, Liang W, Fu J, Yi X (2011) Liberation characteristic and physical separation of printed circuit board (PCB). Waste Manag 31:2161–2166. doi:10.1016/j.wasman.2011.05.011 CrossRefGoogle Scholar
  28. 28.
    Yamane LH, de Moraes VT, Espinosa DCR, Tenório JAS (2011) Recycling of WEEE: Characterization of spent printed circuit boards from mobile phones and computers. Waste Manag 31:2553–2558. doi:10.1016/j.wasman.2011.07.006 CrossRefGoogle Scholar
  29. 29.
    Li J, Lu H, Guo J, Xu Z, Zhou Y (2007) Recycle technology for recovering resources and products from waste printed circuit boards. Environ Sci Technol 41:1995–2000. doi:10.1021/es0618245 CrossRefGoogle Scholar
  30. 30.
    Rath SS, Nayak P, Mukherjee PS, Roy Chaudhury G, Mishra BK (2012) Treatment of electronic waste to recover metal values using thermal plasma coupled with acid leaching—a response surface modeling approach. Waste Manag 32:575–583. doi:10.1016/j.wasman.2011.11.001 CrossRefGoogle Scholar
  31. 31.
    Bhat V, Rao P, Patil Y (2012) Development of an integrated model to recover precious metals from electronic scrap—a novel strategy for E-Waste management. Procedia Soc Behav Sci 37:397–406. doi:10.1016/j.sbspro.2012.03.305 CrossRefGoogle Scholar
  32. 32.
    Syed S (2012) Recovery of gold from secondary sources—a review. Hydrometallurgy 115–116:30–51. doi:10.1016/j.hydromet.2011.12.012 CrossRefGoogle Scholar
  33. 33.
    Kim E, Kim M, Lee J, Pandey BD (2011) Selective recovery of gold from waste mobile phone PCBs by hydrometallurgical process. J Hazard Mater 198:206–215. doi:10.1016/j.jhazmat.2011.10.034 CrossRefGoogle Scholar
  34. 34.
    Robinson BH (2009) E-waste: an assessment of global production and environmental impacts. Sci Total Environ 408:183–191. doi:10.1016/j.scitotenv.2009.09.044 CrossRefGoogle Scholar
  35. 35.
    Sepúlveda A, Schluep M, Renaud FG, Streicher M, Kuehr R, Hagelüken C, Gerecke AC (2010) A review of the environmental fate and effects of hazardous substances released from electrical and electronic equipments during recycling: examples from China and India. Environ Impact Assess Rev 30:28–41. doi:10.1016/j.eiar.2009.04.001 CrossRefGoogle Scholar
  36. 36.
    Frazzoli C, Orisakwe OE, Dragone R, Mantovani A (2010) Diagnostic health risk assessment of electronic waste on the general population in developing countries’ scenarios. Environ Impact Assess Rev 30:388–399. doi:10.1016/j.eiar.2009.12.004 CrossRefGoogle Scholar
  37. 37.
    Xing GH, Chan JKY, Leung AOW, Wu SC, Wong MH (2009) Environmental impact and human exposure to PCBs in Guiyu, an electronic waste recycling site in China. Environ Int 35:76–82. doi:10.1016/j.envint.2008.07.025 CrossRefGoogle Scholar
  38. 38.
    Grant K, Goldizen FC, Sly PD, Brune MN, Neira M, van den Berg M, Norman RE (2013) Health consequences of exposure to e-waste: a systematic review. Lancet Glob Heal 1:e350–e361. doi:10.1016/S2214-109X(13)70101-3
  39. 39.
    Barba-Gutiérrez Y, Adenso-Díaz B, Hopp M (2008) An analysis of some environmental consequences of European electrical and electronic waste regulation. Resour Conserv Recycl 52:481–495. doi:10.1016/j.resconrec.2007.06.002 CrossRefGoogle Scholar
  40. 40.
    Tsydenova O, Bengtsson M (2011) Chemical hazards associated with treatment of waste electrical and electronic equipment. Waste Manag 31:45–58. doi:10.1016/j.wasman.2010.08.014 CrossRefGoogle Scholar
  41. 41.
    Yamasue E, Minamino R, Numata T, Nakajima K, Murakami S, Daigo I, Hashimoto S, Okumura H, Ishihara KN (2009) Novel evaluation method of elemental recyclability from urban mine—concept of urban ore TMR. Mater Trans 50:1536–1540. doi:10.2320/matertrans.MBW200816 CrossRefGoogle Scholar
  42. 42.
    Agrawal A, Sahu KK (2010) Problems, prospects and current trends of copper recycling in India: an overview. Resour Conserv Recycl 54:401–416. doi:10.1016/j.resconrec.2009.09.005 CrossRefGoogle Scholar
  43. 43.
    Kang HY, Schoenung JM (2005) Electronic waste recycling: a review of U.S. infrastructure and technology options. Resour Conserv Recycl 45:368–400. doi:10.1016/j.resconrec.2005.06.001 CrossRefGoogle Scholar
  44. 44.
    Anindya A, 2012. Minor Elements Distribution during the Smelting of WEEE with Copper Scrap. RMIT UniversityGoogle Scholar
  45. 45.
    Rentz O, Krippner M, Hähre S, Schultmann F (1999) Report on best available techniques (BAT) in copper production. Deutsch-Französisches Inst. für Umweltforsch. Univ. Karlsruhe (TH), Karlsruhe, GerGoogle Scholar
  46. 46.
    Nolte A (1997) Metallurgical utilization of reusable products from the recycling industry in a secondary copper smelter. In: EPD Congress 1997, pp 377–400Google Scholar
  47. 47.
    Traulsen HR, Taylor JC, George DB (1982) Copper smelting—an overview. JOM 34:35–40. doi:10.1007/BF03338071 CrossRefGoogle Scholar
  48. 48.
    Shuva MAH, Rhamdhani MA, Brooks GA, Masood S, Reuter MA (2016) Thermodynamics behaviour of Germanium during equilibrium reactions between FeOx–CaO–SiO2–MgO slag and molten copper. Metall Mater Trans B 47(5):2889–2903CrossRefGoogle Scholar
  49. 49.
    Shuva MAH, Rhamdhani MA, Brooks GA, Masood SH, Reuter MA (2016) Thermodynamics of palladium (Pd) and tantalum (Ta) relevant to secondary copper smelting. Metall Materi Trans B. doi:10.1007/s11663-016-0839-y Google Scholar
  50. 50.
    Shuva MAH, Rhamdhani MA, Brooks GA, Masood S, Reuter MA (2016) Thermodynamics data of valuable elements relevant to e-waste processing through primary and secondary copper production: a review. J Clean Prod 131:795–809CrossRefGoogle Scholar

Copyright information

© Springer Japan 2017

Authors and Affiliations

  • Maryam Ghodrat
    • 1
  • Muhammad Akbar Rhamdhani
    • 2
  • Abdul Khaliq
    • 2
  • Geoffrey Brooks
    • 2
  • Bijan Samali
    • 1
  1. 1.Centre for infrastructure engineering, School of computing, Engineering and mathematicsWestern Sydney UniversitySydneyAustralia
  2. 2.Department of Mechanical Engineering and Product Design EngineeringSwinburne University of TechnologyMelbourneAustralia

Personalised recommendations