Skip to main content
Log in

The effects of using reprocessable material on the durability and mechanical properties of landfill leachate collection HDPE pipes

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

This paper investigated the durability and mechanical properties of landfill leachate collection HDPE pipes which had been made of different weight percent amounts of virgin and reprocessable HDPE compounds (VC and RC). Durability is reported base on the chemical properties, obtained through oxidative induction time (OIT) and melt flow index (MFI) measurements, at the temperature of 50 °C and over a period of 12 months immersion in a synthetic leachate. Mechanical properties are also described according to tensile and pressure tests which had been conducted on the pipes samples. All of the factors were examined had been affected by the addition of RC, but for the special combination the antioxidant depletion was significantly affected by the experimental aging condition and no important changes had been observed in the other pipe properties. The results from OIT tests indicate that the rate of antioxidant depletion is reduced by an increase in the weight percent amounts of RC, during the experimental aging condition. This reduction is probably attributed to the extraction of antioxidants from RC in their recovery process. Finally, although these results are related to the particular HDPE compound, antioxidant formulation and condition examined, but it can be said that the use of clean own reprocessable material for the production of landfill leachate pipes shall be permitted without limitations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tchobanoglous G, Kreit, F (2002) Handbook of solid waste management (2nd Ed.). McGraw-Hill, Inc., New York

  2. Simões C, Costa Pinto L, Bernardo C (2013) Environmental and economic assessment of a road safety product made with virgin and recycled HDPE: a comparative study. J Environ Manage 114:209–215. doi:10.1016/j.jenvman.2012.10.001

    Article  Google Scholar 

  3. Al-Salem S, Lettieri P, Baeyens J (2009) Recycling and recovery routes of plastic solid waste (PSW): a review. Waste Manage 29:2625–2643. doi:10.1016/j.wasman.2009.06.004

    Article  Google Scholar 

  4. Adhikary K, Pang S, Staiger M (2008) Dimensional stability and mechanical behavior of wood–plastic composites based on recycled and virgin high-density polyethylene (HDPE). Compos B 39:807–815. doi:10.1016/j.compositesb.2007.10.005

    Article  Google Scholar 

  5. Usapein P, Chavalparit O (2015) Evaluating the performance of 3R options to reduce landfill wastes using the 3R indicator (3RI): case study of polyethylene factories in Thailand. J Mater Cycles Waste Manage 17:303–311. doi:10.1007/s10163-014-0336-9

    Article  Google Scholar 

  6. Al-Salem S, Lettieri P, Baeyens J (2010) The valorization of plastic solid waste (PSW) by primary to quaternary routes: from re-use to energy and chemicals. Prog Energy Combust Sci 36:103–129. doi:10.1016/j.pecs.2009.09.001

    Article  Google Scholar 

  7. Qian X, Koerner R, Gray D (2002) Geotechnical aspects of landfill design and construction. Prentice-Hall, Inc., New Jersey

    Google Scholar 

  8. Brachman R (2011) Design and performance of plastic drainage pipes in environmental containment facilities. J ASTM Int 8:1–13. doi:10.1520/JAI102852

    Article  Google Scholar 

  9. Krushelnitzky R, Brachman R (2013) Buried high-density polyethylene pipe deflections at elevated temperatures. Geotext Geomembr 40:69–77. doi:10.1016/j.geotexmem.2013.08.001

    Article  Google Scholar 

  10. Krushelnitzky R, Brachman R (2011) Antioxidant depletion in high-density polyethylene pipes exposed to synthetic leachate and air. Geosynth Int 18:63–73. doi:10.1680/gein.2011.18.2.63

    Article  Google Scholar 

  11. Krushelnitzky R, Brachman R (2009) Measured deformations and calculated stresses of high-density polyethylene pipes under very deep burial. Can Geotech J 46:650–664. doi:10.1139/T09-011

    Article  Google Scholar 

  12. Brachman R, Krushelnitzky R (2005) Response of a landfill drainage pipe buried in a trench. Can Geotech J 42:752–762. doi:10.1139/t05-005

    Article  Google Scholar 

  13. Brachman R, Krushelnitzky R (2002) Stress concentrations around circular holes in perforated drainage pipes. Geosynth Int 9:189–213. doi:10.1680/gein.9.0215

    Article  Google Scholar 

  14. Brachman R, Moore I, Rowe R (2000) Local strain on a leachate collection pipe. Can J Civil Eng 27:1273–1285. doi:10.1139/l00-074

    Article  Google Scholar 

  15. Ewais A, Rowe R, Scheirs J (2014) Degradation behavior of HDPE geomembranes with high and low initial high-pressure oxidative induction time. Geotext Geomembr 42:111–126. doi:10.1016/j.geotexmem.2014.01.004

    Article  Google Scholar 

  16. Rowe R, Ewais A (2014) Antioxidant depletion from five geomembranes of same resin but of different thicknesses immersed in leachate. Geotext Geomembr 42:540–554. doi:10.1016/j.geotexmem.2014.08.001

    Article  Google Scholar 

  17. Ewais A, Rowe R (2014) Effect of aging on the stress crack resistance of an HDPE geomembrane. Polym Degrad Stabil 109:194–208. doi:10.1016/j.polymdegradstab.2014.06.013

    Article  Google Scholar 

  18. Abdelaal F, Rowe R (2014) Effect of high temperatures on antioxidant depletion from different HDPE geomembranes. Geotext Geomembr 42:284–301. doi:10.1016/j.geotexmem.2014.05.002

    Article  Google Scholar 

  19. Rowe R, Islam M, Hsuan Y (2010) Effects of thickness on the aging of HDPE geomembranes. J Geotech Geoenviron 136:299–309. doi:10.1061/(ASCE)GT.1943-5606.0000207

    Article  Google Scholar 

  20. Rowe R, Islam M, Brachman R, Arnepalli D, Ewais A (2010) Antioxidant depletion from a high density polyethylene geomembrane under simulated landfill conditions. J Geotech Geoenviron 136:930–939. doi:10.1061/(ASCE)GT.1943-5606.0000302

    Article  Google Scholar 

  21. Rowe R, Rimal S, Sangam H (2009) Ageing of HDPE geomembrane exposed to air, water and leachate at different temperatures. Geotext Geomembr 27:137–151. doi:10.1016/j.geotexmem.2008.09.007

    Article  Google Scholar 

  22. Rowe R, Islam M, Hsuan Y (2008) Leachate chemical composition effects on OIT depletion in an HDPE geomembrane. Geosynth Int 15:136–151. doi:10.1680/gein.2008.15.2.136

    Article  Google Scholar 

  23. Rowe R, Rimal S (2008) Depletion of antioxidants from an HDPE geomembrane in a composite liner. J Geotech Geoenviron 134:68–78. doi:10.1061/(ASCE)1090-0241(2008)134:1(68)

    Article  Google Scholar 

  24. ISO 4427 (2007) Plastics piping systems—Polyethylene (PE) pipes and fittings for water supply

  25. Farshad M (2006). Plastic pipe systems: failure investigation and diagnosis, Elsevier Ltd, London

  26. Islam M, Rowe R (2007) Leachate composition and antioxidant depletion from HDPE geomembranes. Geosynthetics, IFAI

    Google Scholar 

  27. Hsuan Y, Koerner R (1998) Antioxidant depletion lifetime in high-density polyethylene geomembranes. J Geotech Geoenviron 124:532–541. doi:10.1061/(ASCE)1090-0241(1998)124:6(532)

    Article  Google Scholar 

  28. ISO 15270 (2008) Plastics—guidelines for the recovery and recycling of plastics waste. http://www.iso.org/iso/catalogue_detail?csnumber=45089. Accessed 20 June 2015

  29. Tátraaljai D, Vámos M, Orbán-Mester Á, Staniek P, Földes E, Pukánszky B (2014) Performance of PE pipes under extractive conditions: effect of the additive package and processing. Polym Degrad Stabil 99:196–203. doi:10.1016/j.polymdegradstab.2013.11.005

    Article  Google Scholar 

  30. ISO 11357 (2009) Plastics—differential scanning calorimetry (DSC). http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=41637. Accessed 20 June 2015

  31. ISO 1133 (2011) Plastics—determination of the melt mass-flow rate (MFR) and melt volume-flow rate (MVR) of thermoplastics. http://www.iso.org/iso/catalogue_detail.htm?csnumber=44273. Accessed 20 June 2015

  32. ISO 6259 (2015) Thermoplastics pipes—determination of tensile properties. http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=62422. Accessed 20 June 2015

  33. ISO 1167 (2006) Thermoplastics pipes, fittings and assemblies for the conveyance of fluids—determination of the resistance to internal pressure. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=33981. Accessed 20 June 2015

  34. ISO 2818 (1994) Plastics—preparation of test specimens by machining. http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=7816. Accessed 20 June 2015

Download references

Acknowledgments

This research was funded by the Amirkabir University of Technology. Valuable contributions from Mr. Mohammadreza Beheshtian Ardakani are gratefully acknowledged. The authors are grateful to their industrial partner Pooyashiraz Co. (Tehran and Shiraz, Iran) for providing the pipes tested.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Beheshtian Ardakani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beheshtian Ardakani, M., Ebadi, T. & Mir Mohammad Hosseini, S.M. The effects of using reprocessable material on the durability and mechanical properties of landfill leachate collection HDPE pipes. J Mater Cycles Waste Manag 19, 1166–1176 (2017). https://doi.org/10.1007/s10163-016-0502-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-016-0502-3

Keywords

Navigation