Skip to main content

Advertisement

Log in

A study on torrefaction characteristics of waste sawdust in an auger type pyrolyzer

  • SPECIAL FEATURE: ORIGINAL ARTICLE
  • 2nd 3R International Scientific Conference (2nd 3RINCs 2015)
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Torrefaction is thermo-chemical process which can improve solid fuel quality as well as grindability. In previous studies, torrefaction has been studied mainly for removal of moisture and for improving grindability. In this experiment, the characteristics of torrefied waste sawdust were studied especially for its energy yield. Hence, torrefaction was performed on varying reaction temperatures (200, 220, 240, 260, 280, 300 °C) and solid residence time (10, 30, 60 min). The results indicated that the yield of torrefaction decreases with increasing temperature and residence time. It was found that above 280 °C, the yield got remarkably decreased. The lowest yield was obtained at the residence time of 60 min. It was also noticed that the HHV of torrefied samples increases with increasing temperature. The highest HHV was found to be 26.09 MJ/kg which was obtained at 60 min and 300 °C. However, the highest energy yield was obtained to be 104.17 % which was noticed at 30 min and 260 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Prins MJ, Ptasinski KJ, Frans JJG (2006) Torrefaction of wood. Part 1. Weight loss kinetics. J Anal Appl Pyrol 77:28–34. doi:10.1016/j.jaap.2006.01.002

    Article  Google Scholar 

  2. Arias B, Pevida C, Fermoso J, Plaza MG, Rubiera F, Pis JJ (2008) Influence of torrefaction on the grindability and reactivity of woody biomass. Fuel Process Technol 89:169–175. doi:10.1016/j.fuproc.2007.09.002

    Article  Google Scholar 

  3. Chen WH, Kuo PC (2011) Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy 36:803–811. doi:10.1016/j.energy.2010.12.036

    Article  Google Scholar 

  4. Phanphanich M, Mani S (2011) Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour Technol 102:1246–1253. doi:10.1016/j.biortech.2010.08.028

    Article  Google Scholar 

  5. Oasmaa A, Elliott DC, Müller S (2009) Quality control in fast pyrolysis bio-oil production and use. Environ Prog Sustain Energy 28:404–409

    Article  Google Scholar 

  6. Di Blasi C (2008) Modeling chemical and physical processes of wood and biomass pyrolysis. Prog Energy Combust Sci 34:47–90. doi:10.1016/j.pecs.2006.12.001

    Article  Google Scholar 

  7. Bridgeman TG, Jones JM, Shield I, Williams PT (2008) Torrefaction of reed canary grass, wheat straw and willow to enhance solid fuel qualities and combustion properties. Fuel 87:844–856. doi:10.1016/j.fuel.2007.05.041

    Article  Google Scholar 

  8. Deng J, Wang GJ, Kuang JH, Zhang YL, Luo YH (2009) Pretreatment of agricultural residues for co-gasification via torrefaction. J Anal Appl Pyrol 86:331–337. doi:10.1016/j.jaap.2009.08.006

    Article  Google Scholar 

  9. Wilk M, Magdziarz A, Kalemba I, Gara P (2016) Carbonisation of wood residue into charcoal during low temperature process. Renew Energy 85:507–513. doi:10.1016/j.renene.2015.06.072

    Article  Google Scholar 

  10. Wilk M, Magdziarz A, Kalemba I (2015) Characterisation of renewable fuels’ torrefaction process with different instrumental techniques. Energy. doi:10.1016/j.energy.2015.04.073

    Google Scholar 

  11. Zheng A, Zhao Z, Chang S, Huang Z, Wang X, He F, Li H (2013) Effect of torrefaction on structure and fast pyrolysis behavior of corncobs. Bioresour Technol 128:370–377. doi:10.1016/j.biortech.2012.10.067

    Article  Google Scholar 

  12. Di Blasi C, Lanzetta M (1997) Intrinsic kinetics of isothermal xylan degradation in inert atmosphere. J Anal Appl Pyrol 40:287–303. doi:10.1016/S0165-2370(97)00028-4

    Article  Google Scholar 

  13. Meng J, Park J, Tilotta D, Park S (2012) The effect of torrefaction on the chemistry of fast-pyrolysis bio-oil. Bioresour Technol 111:439–446. doi:10.1016/j.biortech.2012.01.159

    Article  Google Scholar 

  14. Prins MJ, Ptasinski KJ, Janssen FJJG (2006) More efficient biomass gasification via torrefaction. Energy 31:3458–3470. doi:10.1016/j.energy.2006.03.008

    Article  Google Scholar 

  15. Hakkou M, Pétrissans M, Gérardin P, Zoulalian A (2006) Investigations of the reasons for fungal durability of heat-treated beech wood. Polym Degrad Stab 91:393–397. doi:10.1016/j.polymdegradstab.2005.04.042

    Article  Google Scholar 

  16. Chen WH, Hsu HC, Lu KM, Lee WJ, Lin TC (2011) Thermal pretreatment of wood (Lauan) block by torrefaction and its influence on the properties of the biomass. Energy 36:3012–3021. doi:10.1016/j.energy.2011.02.045

    Article  Google Scholar 

  17. Nunes LJR, Matias JCO, Catalão JPS (2014) A review on torrefied biomass pellets as a sustainable alternative to coal in power generation. Renew Sustain Energy Rev 40:153–160. doi:10.1016/j.rser.2014.07.181

    Article  Google Scholar 

  18. Bergman PCA (2005). Combined torrefaction and pelletisation. The TOP process. https://www.ecn.nl/docs/library/report/2005/c05073.pdf. Accessed July 2005

  19. Bridgeman TG, Jones JM, Williams A, Waldron DJ (2010) An investigation of the grindability of two torrefied energy crops. Fuel 89:3911–3918. doi:10.1016/j.fuel.2010.06.043

    Article  Google Scholar 

  20. Chen WH, Kuo PC (2010) A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy 35:2580–2586. doi:10.1016/j.energy.2010.02.054

    Article  Google Scholar 

  21. Boateng AA, Mullen CA (2013) Fast pyrolysis of biomass thermally pretreated by torrefaction. J Anal Appl Pyrol 100:95–102. doi:10.1016/j.jaap.2012.12.002

    Article  Google Scholar 

  22. Park WC, Atreya A, Baum HR (2010) Experimental and theoretical investigation of heat and mass transfer processes during wood pyrolysis. Combust Flame 157:481–494. doi:10.1016/j.combustflame.2009.10.006

    Article  Google Scholar 

  23. Felfli FF, Luengo CA, Suárez JA, Beatón PA (2005) Wood briquette torrefaction. Energy Sustain Dev 9:19–22. doi:10.1016/S0973-0826(08)60519-0

    Article  Google Scholar 

  24. Khumsak O, Wattananoi W, Worasuwannarak N (2011) Bio-oil production from the torrefied biomass. 2011 IEEE 1st conference on clean energy and technology, CET 2011: 68–71. doi:10.1109/CET.2011.6041438

  25. Uemura Y, Omar WN, Tsutsui T, Yusup SB (2011) Torrefaction of oil palm wastes. Fuel 90:2585–2591. doi:10.1016/j.fuel.2011.03.021

    Article  Google Scholar 

  26. Couhert C, Salvador S, Commandré JM (2009) Impact of torrefaction on syngas production from wood. Fuel 88:2286–2290. doi:10.1016/j.fuel.2009.05.003

    Article  Google Scholar 

  27. Prins MJ, Ptasinski KJ, Janssen FJJG (2006) Torrefaction of wood. Part 2. Analysis of products. J Anal Appl Pyrol 77:35–40. doi:10.1016/j.jaap.2006.01.001

    Article  Google Scholar 

  28. Na BI, Ahn BJ, Cho ST, Lee JW (2013) Optimal condition of torrefaction for the high-density solid fuel of Larch (Larix kaempferi). Korean Chem Eng Res 51:739–744. doi:10.9713/kcer.2013.51.6.739

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by Korea Ministry of Environment (MOE) as Waste to energy recycling Human resource development Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Seok Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoo, H.S., Choi, H.S. A study on torrefaction characteristics of waste sawdust in an auger type pyrolyzer. J Mater Cycles Waste Manag 18, 460–468 (2016). https://doi.org/10.1007/s10163-016-0482-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-016-0482-3

Keywords

Navigation