Skip to main content
Log in

Biogas productivity of algal residues from bioethanol production

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate biogas productivity of algal residues from bioethanol production. Pre-treatment based on enzyme was applied for saccharification to produce bioethanol from the alga, Hydrodictyon reticulatum. Pre-treatment with a combination of enzyme and acid was used for saccharification. The specific methane production yield from raw H. reticulatum, enzyme-saccharified and enzyme/acid-saccharified H. reticulatum residues was 147.6, 408.7, and 537.5 mL CH4/g VS (volatile solids), respectively. The methane yield of raw H. reticulatum from experiment was 22.4 % of the theoretical biochemical methane potential, whereas that of enzyme-saccharified and enzyme/acid-saccharified H. reticulatum residues increased up to 45.8 and 61.4 % of the theoretical value, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Scchaefer SH, Sung S (2008) Retooling the ethanol industry: thermophilic anaerobic digestion of thin stillage for methane production and pollution prevention. Water Environ Res 80(2):101–108

    Article  Google Scholar 

  2. Park JH, Yoon JJ, Park HD, Lim DJ, Kim SH (2012) Anaerobic digestibility of algal bioethanol residue. Bioresour Technol 113:78–82

    Article  Google Scholar 

  3. Singh J, Cu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sust Ener Rev 14(9):2596–2610

    Article  Google Scholar 

  4. Khanal SK, Surampalli RY, Zhan TC, Lamsal BP, Tyagi RD, and Kao CM (2010) Bioengergy and biofuel from biowastes and biomass. American Society of Civil Engineers (ASCE), Reston, Virginia

  5. Keith W (2010) Bioalcohol production: biochemical conversion of lignocellulosic biomass. Woodhead Publishing Limited, Cambridge

    Google Scholar 

  6. Sialve B, Bernet N, Berard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgae biodiesel sustainable. Biotechnol Adv 27(4):409–416

    Article  Google Scholar 

  7. Miranda JR, Passarinho PC, Gouveia L (2012) Pre-treatment optimization of Scenedesmus obliquus microalgal for bioethanol production. Bioresour Technol 104:342–348

    Article  Google Scholar 

  8. Harun R, Danquah MK (2011) Enzymatic hydrolysis of microalgal biomass for bioethanol production. Chem Eng J 168(3):1079–1084

    Article  Google Scholar 

  9. Harun R, Danquah MK (2011) Influence of acid pre-treatment on microalgal biomass for bioethanol production. Process Biochem 46(1):304–309

    Article  Google Scholar 

  10. Young JC, Tabak HH (1993) Multilevel protocol for assessing the fate and effect of toxic organic chemical in anaerobic treatment processes. Water Environ Res 65(1):34–45

    Article  Google Scholar 

  11. American Public Health Association (APHA) (2005) Standard methods for the examination of water and wastewater, 21st edn. APHA/AWWA/WEF, Washington, DC

  12. Zwietering MH, Jongenburger I, Rombouts FM, Van’t Riet K (1990) Modeling of the bacterial growth curve. Appl Environ Microb 56(6):1875–1881

    Google Scholar 

  13. Angelidaki I, Alves M, Bozonella D, Borzacconi L, Campos JL, Guwy AJ (2004) Defining the biomethane potential (BMP) of solid organic wastes and energy crops: a proposed protocol for batch assays. Water Sci Technol 59(5):927–934

    Article  Google Scholar 

  14. Tchoganglous G, Theisen H, Vigil SA (1993) integrated solid waste management, engineering principles and management issues. McGraw-Hill, NewYork

    Google Scholar 

  15. Symnos GE, Buswell AM (1933) The methane fermentation of carbohydrate. J Am Chem Soc 55(5):2028–2036

    Article  Google Scholar 

  16. Raposo F, Fernandez-Cegri V, De la Rubia MA, Borja R, Beline F, Cavinato C, Demirer G, Bernandez B, Fernandez-Polanco M, Frgon JC, Ganesh R, Kaparaju P, Koubova J, Mendez R, Menin G, Peene A, Scherer P, Torrijos M, Uellendahl H, Wierinck I, de Wilde V (2011) Biochemical methane potential (BMP) of solid organic substrates: evaluation of anaerobic biodegradability using data from an international interlaboratory study. J Chem Technol Biot 86(8):1088–1098

    Article  Google Scholar 

  17. Park KY, Kweon J, Chatrasakdakul P, Lee K, Cha HY (2013) Anaerobic digestion of microalgal biomass with ultrasonic disintegration. Int Biodeter Biodegr 85:598–602

    Article  Google Scholar 

  18. Salemo M, Nurdogan Y, Lundquist T (2009) Biogas production from algae biomass harvested at wastewater treatment ponds. Bioenergy Engineering Conference, ASABE, pp 11–14

  19. Pilli S, Bhunia P, Yan S, LeBlanc RJ, Tyagi RD, Surampalli RY (2011) Ultrasonic pretreatment of sludge: a review. Ultrason Sonochem 18(1):1–18

    Article  Google Scholar 

  20. Li H, Li C, Liu W, Zou S (2012) Optimized alkaline pretreatment of sludge before anaerobic digestion. Bioresour Technol 123:189–194

    Article  Google Scholar 

  21. National research council (1994) Nutrient requirements of poultry. National Academy of Science, Washington, DC

    Google Scholar 

  22. Feng L, Li Y, Chen C, Liu X, Xio X, Ma X, Zhang R, He Y, Liu G (2013) Biocehmical methane potential (BMP) of vinegar residue and the influence of feed to inoculums rations on biogas production. Bioresources 8(2):2487–2498

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Korea ministry of the Environment (MOE) as an “Eco-Innovation Project” (Project No.: E213-40005-0035-0). This research was supported by the Waste to Energy and Recycling Human Resource Development Project (YL-WE-12-0001) funded by the Korea Ministry of Environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki Young Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K., Chantrasakdakul, P., Kim, D. et al. Biogas productivity of algal residues from bioethanol production. J Mater Cycles Waste Manag 19, 235–240 (2017). https://doi.org/10.1007/s10163-015-0413-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-015-0413-8

Keywords

Navigation