Skip to main content
Log in

Mitigation of non-methane organic compounds through landfill soil cover and its environmental implications

  • SPECIAL FEATURE: ORIGINAL ARTICLE
  • The 9th International Conference on Waste Management and Technology, 9th ICWMT 2014
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Field measurement campaigns were conducted at a Chinese municipal solid waste landfill to investigate variation of non-methane organic compounds (NMOCs) when migrating through an intermediate soil cover. Flux change ratio (FCR) was introduced to indicate quantitative variation of NMOCs between two depths through the soil cover. FCR of NMOCs showed a positive correlation with methane oxidation fraction (99 % confidence level), indicating the synergistic effects of methane oxidation and NMOCs mitigation in soil cover. Emission reduction indicator (ERI), ozone-forming potential reduction indicator (ORI), and toxicity reduction indicator (TRI) of halogenated hydrocarbons were calculated to evaluate the environmental effects of intermediate soil cover for NMOCs control and reached up to 7.85 mg m−2 day−1, 20.8 mg m−2day−1 and 7.27 µg m−2 day−1, respectively. Enhancement of methane oxidation in landfill covers could be an effective way to reduce NMOCs emission and decrease its environmental effects, which would give guidance on landfill management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Scheutz C, Kjeldsen P (2003) Capacity for biodegradation of CFCs and HCFCs in a methane oxidative counter-gradient laboratory system simulating landfill soil covers. Environ Sci Technol 37:5143–5149. doi:10.1021/es026464+

    Article  Google Scholar 

  2. Allen MR, Braithwaite A, Hills CC (1997) Trace organic compounds in landfill gas at seven UK waste disposal sites. Environ Sci Technol 31:1054–1061. doi:10.1021/es9605634

    Article  Google Scholar 

  3. Dincer F, Odabasi AM, Muezzinoglu A (2006) Chemical characterization of odorous gases at a landfill site by gas chromatography-mass spectrometry. J Chromatogr A 1122:222–229. doi:10.1016/j.chroma.2006.04.075

    Article  Google Scholar 

  4. Hodson EL, Martin D, Prinn RG (2010) The municipal solid waste landfill as a source of ozone-depleting substances in the United States and United Kingdom. Atmos Chem Phys 10:1899–1910. doi:10.5194/acp-10-1899-2010

    Article  Google Scholar 

  5. Wagner P, Kuttler W (2013) Biogenic and anthropogenic isoprene in the near-surface urban atmosphere—a case study in Essen, Germany. Sci Total Environ 475:104–115. doi:10.1016/j.scitotenv.2013.12.026

    Article  Google Scholar 

  6. Liu WT, Chen SP, Chang CC, Ouyang CF, Liao WC, Su YC, Wu YC, Wang CH, Wang JL (2014) Assessment of carbon monoxide (CO) adjusted non-methane hydrocarbon (NMHC) emissions of a motor fleet—a long tunnel study. Atmos Environ 89:403–414. doi:10.1016/j.atmosenv.2014.01.002

    Article  Google Scholar 

  7. Sadasivam BY, Reddy KR (2014) Landfill methane oxidation in soil and bio-based cover systems: a review. Rev Environ Sci Bio 13:79–107. doi:10.1007/s11157-013-9325-z

    Article  Google Scholar 

  8. Mor S, Visscher AD, Ravindra K, Dahiya RP, Chandra A, Van Cleemput O (2006) Induction of enhanced methane oxidation in compost: temperature and moisture response. Waste Manage 26:381–388. doi:10.1016/j.wasman.2005.11.005

    Article  Google Scholar 

  9. Scheutz C, Kjeldsen P (2005) Biodegradation of trace gases in simulated landfill soil cover systems. J Air Waste Manage 55:878–885. doi:10.1080/10473289.2005.10464693

    Article  Google Scholar 

  10. Schuetz C, Bogner J, Chanton J, Blake D, Morcet M, Kjeldsen P (2003) Comparative oxidation and net emissions of methane and selected mon-methane organic compounds in landfill cover soils. Environ Sci Technol 37:5150–5158. doi:10.1021/es034016b

    Article  Google Scholar 

  11. Scheutz C, Bogner J, Chanton JP, Blake D, Morcet M, Aran C, Kjeldsen P (2008) Atmospheric emissions and attenuation of non-methane organic compounds in cover soils at a French landfill. Waste Manage 28:1892–1908. doi:10.1016/j.wasman.2007.09.010

    Article  Google Scholar 

  12. Kjeldsen P, Dalager A, Broholm K (1997) Attenuation of methane and nonmethane organic compounds in landfill gas affected soils. J Air Waste Manage 47:1268–1278. doi:10.1080/10473289.1997.10464072

    Article  Google Scholar 

  13. Duan ZH, Lu WJ, Li D, Wang HT (2014) Temporal variation of trace compound emission on the working surface of a landfill in Beijing. Atmos Environ 88:230–238. doi:10.1016/j.atmosenv.2014.01.051

    Article  Google Scholar 

  14. Yue DB, Han B, Sun Y, Yang T (2014) Sulfide emissions from different areas of a municipal solid waste landfill in China. Waste Manag 34:1041–1044. doi:10.1016/j.wasman.2013.07.020

    Article  Google Scholar 

  15. Abichou T, Powelson D, Chanton J, Escoriaza S, Stern J (2006) Characterization of methane flux and oxidation at a solid waste landfill. J Environ Eng 132:220–228. doi:10.1061/(ASCE)0733-9372(2006)132:2(220)

    Article  Google Scholar 

  16. Stern JC, Chanton J, Abichou T, Powelson D, Yuan L, Escoriza S, Bogner J (2007) Use of a biologically active cover to reduce landfill methane emissions and enhance methane oxidation. Waste Manage 27:1248–1258. doi:10.1016/j.wasman.2006.07.018

    Article  Google Scholar 

  17. Yang T, Yue DB, Han B, Sun Y (2014) Field methane oxidation efficiency at municipal solid waste landfills located in the north of China. Adv Mater Res 878:812–820. doi:10.4028/www.scientific.net/AMR.878.812

    Article  Google Scholar 

  18. US Environmental Protection Agency (2012) Quantifying methane abatement efficiency at three municipal solid waste landfills. EPA/600/R-12/033. ARCADIS US, Inc, Durham

  19. Saquing JM, Chanton JP, Yazdani R, Barlaz MA, Scheutz C, Blake DR, Imhoff PT (2014) Assessing methods to estimate emissions of non-methane organic compounds from landfills. Waste Manage 34:2260–2270. doi:10.1016/j.wasman.2014.07.007

    Article  Google Scholar 

  20. Kucera CL, Kirkham DR (1971) Soil respiration studies in tallgrass prairie in Missouri. Ecology 52:912–915. doi:10.2307/1936043

    Article  Google Scholar 

  21. Gebert J, Rower IU, Scharff H, Roncato CDL, Cabral AR (2011) Can soil gas profiles be used to assess microbial CH4 oxidation in landfill covers? Waste Manag 31:987–994. doi:10.1016/j.wasman.2010.10.008

    Article  Google Scholar 

  22. Carter WPL, Heo G (2012) Development of revised SPARC aromatics mechanisms. Final report to california air resources board contracts No. 07-730 and 08-326

  23. Thomas CL, Barlaz MA (1999) Production of non-methane organic compounds during refuse decomposition in a laboratory-scale landfill. Waste Manage Res 17:205–211. doi:10.1034/j.1399-3070.1999.00030.x

    Article  Google Scholar 

  24. Chanton J, Abichou T, Ford C, Harter G, Green R, Goldsmith D, Swan N (2011) Landfill methane oxidation across climate types in the U.S. Environ Sci Technol 45:313–319. doi:10.1021/es101915r

    Article  Google Scholar 

  25. Spokas KA, Bogner JE (2011) Limits and dynamics of methane oxidation in landfill cover soils. Waste Manag 31:823–832. doi:10.1016/j.wasman.2009.12.018

    Article  Google Scholar 

  26. Barlaz MA, Green RB, Chanton JP, Goldsmith CD, Hater GR (2004) Evaluation of a biologically active cover for mitigation of landfill gas emissions. Environ Sci Technol 38:4891–4899. doi:10.1021/es049605b

    Article  Google Scholar 

  27. Majumdar D, Ray S, Chakraborty S, Rao PS, Akolkar AB, Chowdhury M (2014) Emission, speciation, and evaluation of impacts of non-methane volatile organic compounds from open dump site. J Air Waste Manage 64:834–845. doi:10.1080/10962247.2013.873747

    Article  Google Scholar 

  28. Scheutz C, Kjeldsen P, Bogner JE, Visscher AD, Gebert J, Hilger HA, Huber-Humer M, Spokas K (2009) Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manage Res 27:409–455. doi:10.1177/0734242X09339325

    Article  Google Scholar 

  29. Yao YJ, Su Y, Wu Y, Liu WP, He R (2015) An analytical model for estimating the reduction of methane emission through landfill cover soils by methane oxidation. J Hazard Mater 283:871–879. doi:10.1016/j.jhazmat.2014.10.035

    Article  Google Scholar 

  30. Hrad M, Huber-Humer M, Reichenauer BW (2012) Design of top covers supporting aerobic in situ stabilization of old landfills-an experimental simulation in lysimeters. Inst Waste Manag 32:2324–2335. doi:10.1016/j.wasman.2012.06.004

    Article  Google Scholar 

  31. Scheutz C, Pedersen RB, Petersen PH, Jorgensen JHB, Ucendo IMB, Monster JG (2014) Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system. Waste Manag 34:1179–1190. doi:10.1016/j.wasman.2014.03.015

    Article  Google Scholar 

Download references

Acknowledgments

This project is supported by Special Fund of Environmental Protection Research for Public Welfare of China (No. 201509055) and Tsinghua University Initiative Scientific Research Program (No. 2012Z02128).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongbei Yue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Yue, D., Zhao, K. et al. Mitigation of non-methane organic compounds through landfill soil cover and its environmental implications. J Mater Cycles Waste Manag 17, 616–625 (2015). https://doi.org/10.1007/s10163-015-0403-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-015-0403-x

Keywords

Navigation