Skip to main content
Log in

Pt/ITQ-6 zeolite as a bifunctional catalyst for hydrocracking of waste plastics containing polystyrene

  • SPECIAL FEATURE: ORIGINAL ARTICLE
  • Chemical Feedstock Recycling 10
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Thermal and catalytic hydrocracking of polystyrene to fuels was compared. The use of a bifunctional (platinum and acidic sites) catalyst such as Pt/Ferrierite not only increases conversion but also selectivity to a wider and more interesting variety of products in the gasoline range (C5–C12). As polymer molecules present steric hindrance to access internal active sites in the catalyst, Pt/ITQ-6 was prepared by delamination to maximize the external surface of the catalyst while keeping its composition and type. Although Pt/ITQ-6 presented lower acidity than Pt/Ferrierite, it was mostly external and, thus, accessible to the reactants. In this way, Pt/ITQ-6 significantly improved activity and selectivity of Pt/Ferrierite. The performance of Pt/ITQ-6 when recycled polystyrene was used as reactant proved this catalyst is very promising for this application, although catalytic activity decreased as a consequence of plastic additives and impurities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Association of Plastics Manufacturers in Europe (PlasticsEurope). Plastics—the facts 2013. http://www.plasticseurope.org. Accessed 12 Dec 2013

  2. Bhaskar T (2011) Catalysts for the conversion of waste plastics: challenges for the development of industrial processes. In: Proceedings 6th international symposium on feedstock recycling of polymeric materials (ISFR 2011). Toledo (Spain), p 9–12

  3. Ding W, Liang J, Anderson LL (1997) Thermal and catalytic degradation of high density polyethylene and commingled post-consumer plastic waste. Fuel Process Technol 51:47–62. doi:10.1016/S0378-3820(96)01080-6

    Article  Google Scholar 

  4. Kim JR, Yoon JH, Park DW (2002) Catalytic recycling of the mixture of polypropylene and polystyrene. Polym Degrad Stab 76:61–67. doi:10.1016/S0141-3910(01)00266-X

    Article  Google Scholar 

  5. López-Urionabarrenechea A, de Marco I, Caballero BM, Laresgoiti MF, Adrados A (2012) Catalytic stepwise pyrolysis of packaging plastic waste. J Anal Appl Pyrol 96:54–62. doi:10.1016/j.jaap.2012.03.004

    Article  Google Scholar 

  6. Na JG, Jeong BH, Chung SH, Kim SS (2006) Pyrolysis of low-density polyethylene using synthetic catalysts produced from fly ash. J Mater Cycles Waste Manag 8:126–132. doi:10.1007/s10163-006-0156-7

    Article  Google Scholar 

  7. Nishino J, Itoh M, Ishinomori T, Kubota N, Uemichi Y (2003) Development of a catalytic cracking process for converting waste plastics to petrochemicals. J Mater Cycles Waste Manag 5:89–93. doi:10.1007/s10163-003-0086-6

    Article  Google Scholar 

  8. Obuchi E, Suyama M, Nakano K (2001) Decomposition of mixed plastics consisting of polypropylene and polyethylene terephthalate into oils over titania/silica catalysts. J Mater Cycles Waste Manag 3:88–92. doi:10.1007/s10163-000-0043-6

    Google Scholar 

  9. Sekine Y, Fujimoto K (2003) Catalytic degradation of PP with an Fe/activated carbon catalyst. J Mater Cycles Waste Manag 5:107–112. doi:10.1007/s10163-003-0091-9

    Article  Google Scholar 

  10. Serrano DP, Aguado J, Escola JM, Garagorri E, Rodríguez JM, Morselli L, Palazzi G, Orsi R (2004) Feedstock recycling of agriculture plastic film wastes by catalytic cracking. Appl Catal B-Environ 49:257–265. doi:10.1016/j.apcatb.2003.12.014

    Article  Google Scholar 

  11. Balakrishnan RK, Guria C (2007) Thermal degradation of polystyrene in the presence of hydrogen by catalyst in solution. Polym Degrad Stab 92:1583–1591. doi:10.1016/j.polymdegradstab.2007.04.014

    Article  Google Scholar 

  12. Ding W, Liang J, Anderson LL (1997) Hydrocracking and hydroisomerization of high-density polyethylene and waste plastic over zeolite and silica-alumina-supported Ni and Ni-Mo sulfides. Energ Fuels 11:1219–1224. doi:10.1021/ef970051q

    Article  Google Scholar 

  13. Metecan IH, Ozkan AR, Isler R, Yanik J, Saglam M, Yuksel M (2005) Naphtha derived from polyolefins. Fuel 84:619–628. doi:10.1016/j.fuel.2004.10.006

    Article  Google Scholar 

  14. Karagoz S, Karayildirim T, Ucar S, Yuksel M, Yanik J (2003) Liquefaction of municipal waste plastics in VGO over acidic and non-acidic catalysts. Fuel 82:415–423. doi:10.1016/S0016-2361(02)00250-8

    Article  Google Scholar 

  15. Rodiansono, Wega Trisunaryanti (2007) Hydrocracking of plastic waste of polypropylene over Ni-Mo supported-mixed natural zeolite (Z)-Nb2O5, Z-γ-Al2O3 and Z-ZCP-50. In: Proceedings international conference on chemical science (ICCS 2007). Yogyakarta (Indonesia)

  16. He M, Xiao B, Hu Z, Liu S, Guo X, Luo S (2009) Syngas production from catalytic gasification of waste polyethylene: influence of temperature on gas yield and composition. Int J Hydrogen Energ 34:1342–1348. doi:10.1016/j.ijhydene.2008.12.023

    Article  Google Scholar 

  17. Mastral FJ, Esperanza E, Berrueco C, Juste M, Ceamanos J (2003) Fluidized bed thermal degradation products of HDPE in an inert atmosphere and in air-nitrogen mixtures. J Anal Appl Pyrol 70:1–17. doi:10.1016/S0165-2370(02)00068-2

    Article  Google Scholar 

  18. Park Y, Namioka T, Sakamoto S, Min TJ, Roh SA, Yoshikawa K (2010) Optimum operating conditions for a two-stage gasification process fueled by polypropylene by means of continuous reactor over ruthenium catalyst. Fuel Process Technol 91:951–957. doi:10.1016/j.fuproc.2009.10.014

    Article  Google Scholar 

  19. Wu C, Williams PT (2010) Pyrolysis-gasification of plastics, mixed plastics and real-world plastic waste with and without Ni-Mg-Al catalyst. Fuel 89:3022–3032. doi:10.1016/j.fuel.2010.05.032

    Article  Google Scholar 

  20. Szekely T, Varhegyi G, Till F, Szabo P, Jakab E (1987) The effects of heat and mass transport on the results of thermal decomposition studies: part 2. Polystyrene, polytetrafluoroethylene and polypropylene. J Anal Appl Pyrol 11:83–92. doi:10.1016/0165-2370(87)85021-0

    Article  Google Scholar 

  21. Fuentes-Ordóñez EG, Salbidegoitia JA, González-Marcos MP, González-Velasco JR (2013) Transport phenomena in catalytic hydrocracking of polystyrene in solution. Ind Eng Chem Res 52:14798–14807. doi:10.1021/ie401968r

    Article  Google Scholar 

  22. Aguado J, Serrano DP, Romero MD, Escola JM (1996) Catalytic conversion of polyethylene into fuels over mesoporous MCM-41. Chem Commun 6:725–726. doi:10.1039/cc9960000725

    Article  Google Scholar 

  23. Jeon JK, Park YK, Kim S, Kim SS, Yim JH, Sohn JM (2007) Catalytic degradation of polyethylene by Al-MCM-41: comparison of post-synthetic metal grafting and direct sol-gel synthesis methods. J Ind Eng Chem 13:176–181

    Google Scholar 

  24. Serrano DP, Aguado J, Escola JM (2000) Catalytic conversion of polystyrene over HMCM-41, HZSM-5 and amorphous SiO2-Al2O3: comparison with thermal cracking. Appl Catal B-Environ 25:181–189. doi:10.1016/S0926-3373(99)00130-7

    Article  Google Scholar 

  25. Hesse ND, White RL (2004) Polyethylene catalytic hydrocracking by PtHZSM-5, PtHY, and PtHMCM-41. J Appl Polym Sci 92:1293–1301. doi:10.1002/app.20083

    Article  Google Scholar 

  26. Lee JY, Park SM, Saha SK, Cho SJ, Seo G (2011) Liquid-phase degradation of polyethylene (PE) over MFI zeolites with mesopores: effects of the structure of PE and the characteristics of mesopores. Appl Catal B-Environ 108–109:61–71. doi:10.1016/j.apcatb.2011.08.009

    Google Scholar 

  27. Lee YJ, Kim JH, Kim SH, Hong SB, Seo G (2008) Nanocrystalline beta zeolite: an efficient solid acid catalyst for the liquid-phase degradation of high-density polyethylene. Appl Catal B-Environ 83:160–167. doi:10.1016/j.apcatb.2008.02.013

    Article  Google Scholar 

  28. Serrano DP, Aguado J, Escola JM, Rodríguez JM, Peral A (2010) Catalytic properties in polyolefin cracking of hierarchical nanocrystalline HZSM-5 samples prepared according to different strategies. J Catal 276:152–160. doi:10.1016/j.jcat.2010.09.008

    Article  Google Scholar 

  29. Serrano DP, Aguado J, Escola JM, Rodríguez JM, Peral A, Morales G, Abella E (2011) Synthesis of hierarchical ZSM-5 by silanization and alkoxylation of protozeolitic units. Catal Today 168:86–95. doi:10.1016/j.cattod.2010.12.040

    Article  Google Scholar 

  30. Covarrubias C, Gracia F, Palza H (2010) Catalytic degradation of polyethylene using nanosized ZSM-2 zeolite. Appl Catal A-Gen 384:186–191. doi:10.1016/j.apcata.2010.06.034

    Article  Google Scholar 

  31. Corma A, Díaz U, Domine ME, Fornés V (2000) AlITQ-6 and TiITQ-6: synthesis, characterization, and catalytic activity. Angew Chem Int Edit 39:1499–1501. doi:10.1002/(SICI)1521-3773(20000417)39:8<1499:AID-ANIE1499>3.0.CO;2-0

    Article  Google Scholar 

  32. Corma A, Martínez A, Martínez-Soria V (2001) Catalytic performance of the new delaminated ITQ-2 zeolite for mild hydrocracking and aromatic hydrogenation processes. J Catal 200:259–269. doi:10.1006/jcat.2001.3219

    Article  Google Scholar 

  33. Chica A, Díaz U, Fornés V, Corma A (2009) Changing the hydroisomerization to hydrocracking ratio of long chain alkanes by varying the level of delamination in zeolitic (ITQ-6) materials. Catal Today 147:179–185. doi:10.1016/j.cattod.2008.10.046

    Article  Google Scholar 

  34. Venkatesh KR, Hu J, Tierney JW, Wender I (1996) Hydrocracking and hydroisomerization of long-chain alkanes and polyolefins over metal-promoted anion-modified transition metal oxides. US Patent 6184430

  35. Emeis CA (1993) Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts. J Catal 141:347–354. doi:10.1006/jcat.1993.1145

    Article  Google Scholar 

  36. Corma A, Fornés V, Forni L, Márquez F, Martínez-Triguero J, Moscotti D (1998) 2,6-di-tert-butyl-pyridine as a probe molecule to measure external acidity of zeolites. J Catal 179:451–458. doi:10.1006/jcat.1998.2233

    Article  Google Scholar 

  37. Nesterenko NS, Avdey AV, Ermilov AY (2006) FTIR study of the CO adsorption over Pt/MFI catalysts: Ab initio interpretation. Int J Quantum Chem 106:2281–2289. doi:10.1002/qua.20997

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Spanish Ministry for Science and Innovation (CTQ2010-17277), the Basque Government (GIC-IT-657-13) and the University of the Basque Country, UPV/EHU, (UFI11/39) for their financial support, and Gaiker-IK4 for the sample of recycled PS. JAS wants to thank the Basque Government for the Research Grant (BFI-2010-150).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. González-Marcos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fuentes-Ordóñez, E.G., Salbidegoitia, J.A., González-Marcos, M.P. et al. Pt/ITQ-6 zeolite as a bifunctional catalyst for hydrocracking of waste plastics containing polystyrene. J Mater Cycles Waste Manag 17, 465–475 (2015). https://doi.org/10.1007/s10163-014-0322-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-014-0322-2

Keywords

Navigation