Journal of Material Cycles and Waste Management

, Volume 18, Issue 1, pp 132–145 | Cite as

Digestion reactions of paper sludge combustion ash in strong alkaline solutions at 60 °C

  • Andrea Hartmann
  • Valeriy Petrov
  • Josef-Christian Buhl
  • K. Rübner
  • M. Lindemann
ORIGINAL ARTICLE

Abstract

Alkaline reactions of paper sludge combustion ash at low temperature (60 °C) were performed using a calcite-rich paper ash (PA 1) and a gehlenite-rich ash (PA 2). Strong alkaline conditions (8, 12, 16 M NaOH) were revealed at reaction times of 1–4 h and 12–24 h. Reactions were performed with pure ashes and in the presence of NaAlO2. The products were characterized by XRD, FTIR, SEM/EDX, gravimetry and chemical analysis. The conversion was found to proceed mainly in the period between 1 and 4 h. Portlandite and hydrogarnet were observed from PA 1 in 8 M NaOH. Onset of formation of Ca4Al2O6CO3.11H2O beside Ca(OH)2 could be analyzed after reaction of PA 1 in 12 M and 16 M NaOH. Addition of NaAlO2 favored crystallization of hydrogarnet and Ca4Al2O6CO3.11H2O. For PA 2 gehlenite remained stable, but a high portlandite fraction was observed. Addition of NaAlO2 yielded hydrogarnet beside gehlenite in 8 M NaOH. Higher alkalinities favored crystallization of Ca4Al2O6CO3.11H2O and onset of dissolution of gehlenite. Finally transformation of Ca4Al2O6CO3.11H2O into sodium aluminum silicate hydrate was observed. All results were discussed with regard to heavy metal distribution of the initial PA between the alkaline digestion solution and the products. In conclusion suitable applications of the products were proposed.

Keywords

Paper sludge combustion ash Alkaline digestion reaction Portlandite Katoite Zeolite 

References

  1. 1.
    Latva-Somppi J, Moisio M, Kauppinen EI, Valmari T, Ahonen P, Tapper U, Keskinen J (1998) Ash formation during fluidized-bed incineration of paper mill waste sludge. J Aerosol Sci 29(4):461–480CrossRefGoogle Scholar
  2. 2.
    Vamvuka D, Salpigidou N, Kastanaki E, Sfakiotakis S (2009) Possibility of using paper sludge in co-firing applications. Fuel 88:637–643CrossRefGoogle Scholar
  3. 3.
    Wajima T, Haga M, Kuzawa K, Ishimoto H, Tamada O, Ito K, Nishiyama T, Dows RT, Rakovan JF (2006) Zeolite synthesis from paper sludge ash at low temperature (90°) with addition of diatomite. J Hazard Mater B132:244–252CrossRefGoogle Scholar
  4. 4.
    Segui P, Aubert JE, Husson B, Measson M (2001) Characterization of wastepaper sludge ash for its valorization as a component of hydraulic binders. Appl Clay Sci 57:79–85CrossRefGoogle Scholar
  5. 5.
    Ahmadi B, Al-Khaja W (2001) Utilization of paper waste sludge in the building construction industry. Resour Conserv Recycl 32:105–113CrossRefGoogle Scholar
  6. 6.
    Yadollahi R, Hamzeh Y, Ashori A, Pourmousa S, Jafari M, Rashedi K (2013) Reuse of waste sludge from papermaking process in cement composites. Polym Eng Sci 53:183–188CrossRefGoogle Scholar
  7. 7.
    Yan S, Sagoe-Crentsil K, Shapiro G (2011) Reuse of de-inking sludge from wastepaper recycling in cement mortar products. J Environ Manag 92:2085–2090CrossRefGoogle Scholar
  8. 8.
    Yan S, Sagoe-Crentsil K (2012) Properties of wastepaper sludge in geopolymer mortars for masonry applications. J Environ Manag 112:27–32CrossRefGoogle Scholar
  9. 9.
    Ando T, Saito M, Muramatsu SH, Hiyoshi K, Haruna J, Matsue N, Henmi T (2003) Synthesis of zeolite from paper sludge ash, Part 2-the influence of the excess amount of Ca and the ideal mineral composition range of PS ash for the zeolite synthesis. J Clay Sci Soc Jpn 42:208–217Google Scholar
  10. 10.
    Wajima T, Ishimoto H, Kuzawa K, Ito K, Tamada O, Gunter ME, Rakovan JF (2007) Material conversion from paper-sludge ash in NaOH, KOH and LiOH solutions. Amer Miner 92:1105–1111CrossRefGoogle Scholar
  11. 11.
    Mun SP, Ahn BJ (2001) Chemical conversion of paper sludge incineration ash into synthetic zeolite. J Ind Eng Chem 7:292–298Google Scholar
  12. 12.
    Wajima T, Ikegami Y (2008) Zeolite synthesis from paper sludge ash via acid leaching. Chem Eng Commun 195:305–315CrossRefGoogle Scholar
  13. 13.
    Hadan M, Fischer F (1992) Synthesis of fine grained NaA-type Zeolites from superalkaline solutions. Cryst Res Technol 27:343–350CrossRefGoogle Scholar
  14. 14.
    Fischer F, Hadan M, Fiedrich G (1992) Zeolite syntheses from superalkaline reaction mixtures. Collect Czech Chem Commun 57:788–793CrossRefGoogle Scholar
  15. 15.
    Fischer F, Hadan M, Horn A (1991) Investigations to the synthesis of zeolite Na A for using in detergents from superalkaline solutions. Chem Tech 43:191–195Google Scholar
  16. 16.
    Mitteilungen der Länderarbeitsgemeinschaft Abfall LAGA 20, Anforderungen an die stoffliche Verwertung von mineralischen Reststoffen/Abfällen –Technische Regeln-. Mitteilung 20 der Länderarbeitsgemeinschaft Abfall LAGA, Stand November 2003, Vlg. Erich Schmidt, Berlin 2004Google Scholar
  17. 17.
    Beton, hart im Nehmen, stark in der Leistung, fair zur Umwelt (1996) Verein Deutscher Zementwerke VDZ–Forschungsinstitut der Zementindustrie FIZ, DüsseldorfGoogle Scholar
  18. 18.
    International Centre for Diffraction Data, 12 Campus Boulevard, Newton Square, Pennsylvania 190073–3272, USAGoogle Scholar
  19. 19.
    Grew ES, Locock AJ, Mills SJ, Galuskina IO, Galuskin EV, Halenius U (2013) Nomenclature of the garnet supergroup. Amer Miner 98:785–811CrossRefGoogle Scholar
  20. 20.
    Weidlein J, Müller U, Dehnicke K (1981) Schwingungsfrequenzen. G. Thieme Verlag, StuttgartGoogle Scholar
  21. 21.
    Pöllmann H (1986) Solid solution of complex calcium aluminate hydrates containing Cl, OH and \( {\text{CO}}_{{_{3} }}^{{^{2 - } }} \)- anions. 8th Int Congress on the Chemistry of Cement, Rio de Janeiro-Brazil. Communications Theme 2, III:300–306Google Scholar
  22. 22.
    Ritzmann A, Buhl J-Ch, Großmann A (1979) Das Verhalten von aluminiumhaltigen Silikaten unter hydrothermalen Bedingungen im alkalischen Medium. Silikattechnik 30:277–278Google Scholar
  23. 23.
    Großmann A, Fiedler K, Grauert B (1980) Beitrag zur Modellierung komplexer heterogener Reaktionen. Z. phys. Chemie, Leipzig 261:265–270Google Scholar
  24. 24.
    Nakamoto K (1963) Infrared spectra of Inorganic and Coordination Compounds. J. Wiley and Sons, New York, LondonGoogle Scholar
  25. 25.
    Spectroscopic Methods in Mineralogy and Geology (1988) Reviews in Mineralogy, Ed. F. C. Hawthorne, Series Ed. P. H. Ribbe. Mineralogical Society of America, Vol. 18Google Scholar
  26. 26.
    Scheetz BE, White WB (1977) Vibrational spectra of alkaline earth double carbonates. Am Mineral 62:36–50Google Scholar
  27. 27.
    Tsyganenko AA (1975) IR spectra and structure of the hydroxyl covering of oxides comparison with the spectra of hydroxides and silicates. Zhurnal Szrukturnoi Khimii 16:572–577Google Scholar
  28. 28.
    Fujita S, Suzuki K, Shibasaki Y (2002) Synthesis of hydrogarnet from molten slag and its hydrogen chloride fixation performance at high temperature. J Mater Cycles Waste Manag 4:70–76Google Scholar
  29. 29.
    Sharma SK, Simons B, Yoder HS (1983) Raman study of anorthite, calcium Tschermak’s pyroxene, and gehlenite in crystalline and glassy states. Am Mineral 68:1113–1125Google Scholar
  30. 30.
    Moenke H (1966) Mineralspektren. Academie Verlag, GermanyGoogle Scholar
  31. 31.
    Kolesova VA, Ismatov AA (1971) Study of the melilite-type compounds of CaxY2– xBeyAl2–ySiO7 composition. Neorgan Mater 7:1279–1281Google Scholar
  32. 32.
    Marincea S, Dumitras DG, Ghinet C, Fransolet AM, Hatert F, Rondeaux C (2011) Gehlenite from three occurrences of high-temperature skarns, Romania: new mineralogical data. Can Mineral 49:1001–1014CrossRefGoogle Scholar

Copyright information

© Springer Japan 2014

Authors and Affiliations

  • Andrea Hartmann
    • 1
  • Valeriy Petrov
    • 1
  • Josef-Christian Buhl
    • 1
  • K. Rübner
    • 2
  • M. Lindemann
    • 2
  1. 1.Institute of MineralogyLeibniz University HannoverHannoverGermany
  2. 2.Federal Institute for Materials Research and TestingDivison 7.4., Technology of Construction MaterialsBerlinGermany

Personalised recommendations