Skip to main content

Advertisement

Log in

Mineral wool waste in Europe: a review of mineral wool waste quantity, quality, and current recycling methods

  • REVIEW
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

The construction and demolition (C&D) industry has been identified as a major source of waste. European Union legislation states that, by 2020, 70 % of C&D waste must be prepared for reuse, recycled or recovered. European Union member states must increase their C&D waste recycling percentages in order to meet this binding target. Utilization of mineral wool waste, often considered unrecyclable, could improve the recycling percentage of C&D waste. In this article, mineral wool production and waste volumes are estimated based on information from the Eurostat database. A literature survey is conducted to collect information about mineral wool material properties, current recycling methods, and barriers to recycling of mineral wool, and suitable methods for separating mineral wool from C&D waste streams and the economic viability of mineral wool recycling are discussed. It is noted that accurate estimation of mineral wool waste volumes is problematic due to the fragmented nature of available data. Based on the literature review, current methods for recycling mineral wool waste include utilization of mineral wool waste as a raw material in various products. Barriers to recycling include economic questions and issues related to the purity and health effects of mineral wool waste. Material properties of mineral wool waste, such as fire resistance, could provide improved properties in products utilizing mineral wool waste as a raw material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. European Commission (2010) Commission Staff Working Document. http://ec.europa.eu/environment/waste/pdf/Commission%20Working%20Doc.pdf. Accessed 30 January 2012

  2. Fischer C, Werge M (2009) EU as a recycling society – Present recycling levels of municipal waste and construction & demolition waste in the EU. ETC/SCP working paper 2/2009. http://scp.eionet.europa.eu/publications/wp2009_2/wp/wp2009_2. Accessed 30 January 2012

  3. Weber WJ, Jang Y-C, Townsend TG, Laux S (2002) Leachate from land disposed residential construction waste. J Environ Eng 128:237–245. doi:10.1061/(ASCE)0733-9372(2002)128:3(237

    Article  Google Scholar 

  4. Poon CS (2007) Management of construction and demolition waste. Waste Manag 27:159–160. doi:10.1016/j.wasman.2006.10.012

    Article  Google Scholar 

  5. Müller A, Leydolph B, Stanelle K (2009) Recycling mineral wool waste—Technologies for the conversion of the fiber structure, Part 1. Interceram 58:378–381

    Google Scholar 

  6. Širok B, Blagojević B, Bullen P (2008) Mineral Wool, Production and Properties. Woodhead, England

    Google Scholar 

  7. Papadopoulos AM (2005) State of the art in thermal insulation materials and aims for future developments. Energ Build 37:77–86. doi:10.1016/j.enbuild.2004.05.006

    Article  Google Scholar 

  8. Dunster AM (2007) Industrial sector study on the utilization of alternative materials in the manufacture of mineral wool insulation. http://www.smartwaste.co.uk/filelibrary/Mineralwool_sectorstudy.pdf Accessed: 23 January 2012

  9. Lau HH, Whyte A, Law PL (2008) Composition and characteristics of construction waste generated by residential housing project. Int J Environ Res 2(3):261–268

    Google Scholar 

  10. Cochran KM, Townsend TG (2010) Estimating construction and demolition debris generation using a materials flow analysis approach. Waste Manag 30:2247–2254. doi:10.1016/j.wasman.2010.04.008

    Article  Google Scholar 

  11. Bergsdal H, Bohne RA, Brattebø H (2007) Projection of construction and demolition waste in Norway. J Ind Ecol 11(3):27–39. doi:10.1162/jiec.2007.1149

    Article  Google Scholar 

  12. Tam VWY, Tam CM (2006) A review on the viable technology for construction waste recycling. Resour Conserv Recycl 47:209–221. doi:10.1016/j.734resconrec.2005.12.002

  13. Blengini GA (2009) Life cycle of buildings, demolition and recycling potential: a case study in Turin, Italy. Build Environ 44:319–330. doi:10.1016/j.buildenv.2008.03.007

    Article  Google Scholar 

  14. Sal’nikov VB (2003) Properties of mineral wool after long operation in walls of buildings in Middle Ural region (In Russian). Build Mater (Stroitel’nye Materialy). 3/2003: 42–43

  15. Llatas C (2011) A model for quantifying construction waste in projects according to the European waste list. Waste Manag 31:1261–1276. doi:10.1016/j.wasman.2011.01.023

    Article  Google Scholar 

  16. Commission Decision 2000/532/EC of 3 May 2000 replacing Decision 94/3/EC establishing a list of wastes pursuant to Article 1(a) of Council Directive 75/442/EEC on waste and Council Decision 94/904/EC establishing a list of hazardous waste pursuant to Article 1(4) of Council Directive 91/689/EEC on hazardous waste (notified under document number C(2000)1147). Official Journal of the European Union L226, 2000, pp. 3–24

  17. Dunster AM (2007) Characterisation of mineral wastes, resources and processing technologies—Integrated waste management for production of construction material. Case Study: Waste mineral fiber in ceiling tile manufacture http://www.smartwaste.co.uk/filelibrary/Ceiling_tiles_waste_mineral_wool.pdf Accessed: 5 December 2011

  18. European Statistics (Eurostat) (2013) Environmental data center on waste–construction. http://epp.eurostat.ec.europa.eu/portal/page/portal/wa19te/waste_generation_management/generation/construction Accessed: 15.1.2013

  19. European statistics (Eurostat) (2012) prodcom database. http://epp.eurostat.ec.europa.eu/portal/page/portal/prodcom/introduction Accessed: 14 March 2012

  20. Ecofys, Fraunhofer Institute for System and Innovation Research, Öko-Institut (2009) Methodology for the free allocation of emission allowances in the EU ETS post 2012—Sector report for the mineral wool industry. http://ec.europa.eu/clima/policies/ets/benchmarking/docs/bm_study-mineral_wool_en.pdf Accessed: 14 February 2012

  21. Balkevičius V, Christauskas J, Gailius A, Špokauskas A, Siaurys V (2007) Analysis of some properties of model system from low-melting illite clay and fibrous mineral wool waste. Mater Sci-Poland 25:209–217

    Google Scholar 

  22. Öhberg TI (1966) Swedish Patent no. 205 247

  23. Holbek K (1987) U.S. Patent no. 4,287,142

  24. Müller A, Leydolph B, Stanelle K (2010) Recycling mineral wool waste—Technologies for the conversion of the fiber structure, Part 2. Interceram 59:39–44

    Google Scholar 

  25. European Commission (2002) Waste injection into the melting furnace in stone wool production. http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=home.showFile&rep=laymanReport&fil=LIFE02_ENV_FIN_000328_LAYMAN.pdf Accessed: 15 December 2011

  26. Pranckevičeinė J, Balkevičius V, Špokauskas AA (2010) Investigation on properties of sintered ceramics out of low-melting illite clay and additive of fine-dispersed nepheline syenite. Medžiagotyra 16:231–235

    Google Scholar 

  27. Cheng A, Lin W-T, Huang R (2011) Application of rock wool waste in cement-based composites. Mater Des 32:636–642. doi:10.1016/j.matdes.2010.08.014

    Article  Google Scholar 

  28. Bougoul S, Ruy S, de Groot F, Boulard T (2005) Hydraulic and physical properties of stonewool substrates in horticulture. Sci Hortic 104:391–405. doi:10.1016/j.scienta.2005.01.018

    Article  Google Scholar 

  29. Mamiński ML, Król ME, Jaskółowski W, Borysiuk P (2011) Wood-mineral wool hybrid particleboards. Eur J Wood Wood Prod 69:337–339. doi:10.1007/s00107-010-0470-6

    Article  Google Scholar 

  30. Hyvärinen A, Meklin T, Vepsäläinen A, Nevalainen A (2002) Fungi and actinobacteria in moisture-damaged building materials—concentrations and diversity. Int Biodeterior Biodegrad 49:27–37. doi:10.1016/S0964-8305(01)00103-2

    Article  Google Scholar 

  31. Balcerowiak W, Gryta M, Kałędkowski B (1995) Thermal stability of binder for mineral wool insulations. J Therm Anal 43:299–303. doi:10.1007/BF02635997

    Article  Google Scholar 

  32. Finnish Institute of Occupational Health (2012) Chemical safety card: Formaldehyde (in Finnish). http://www.ttl.fi/ova/formalde.html Accessed: 18 January 2012

  33. Finnish Institute of Occupational Health (2012) Chemical safety card: Phenol (in Finnish). http://www.ttl.fi/ova/fenoli.html Accessed: 18 January 2012

  34. Mäkinen M, Kalliokoski P, Kangas J (1999) Assessment of total exposure to phenol-formaldehyde resin glue in plywood manufacturing. Int Arch Occup Environ Health 72:309–314

    Article  Google Scholar 

  35. Pitt JI (1994) The current role of Aspergillus and Penicillium in human and animal health. J Med Vet Mycol 32(1):17–32

    Article  MathSciNet  Google Scholar 

  36. Piecková E, Jesenská Z (1999) Microscopic fungi in dwellings and their health implications in humans. Ann Agric Environ Med 6:1–11

    Google Scholar 

  37. Terr AI (2004) Are indoor molds causing new diseases? J Allerg Clin Immunol 113:221–226. doi:10.1016/j.jaci.2003.11.014

    Article  Google Scholar 

  38. Hesterberg TW, Hart GA (2001) Synthetic vitreous fibers: a review of toxicology research and its impact on hazard classification. Crit Rev Toxicol 31:1–53

    Article  Google Scholar 

  39. Kudo Y, Aizawa Y (2011) Safety evaluation of rock wool after nasal inhalation in rats. Ind Health 49:47–55. doi:10.2486/indhealth.MS1146

    Article  Google Scholar 

  40. Kamstrup O, Davis JMG, Ellehauge A, Guldberg M (1998) The biopersistence and pathogenicity of man-made vitreous fibres after short- and long-term inhalation. Ann Occup Hyg 42:191–199. doi:10.1016/S0003-4878(98)00019-2

    Google Scholar 

  41. De Vuyst P, Dumortier P, Swaen GMH, Pairon JC, Brochard P (1995) Respiratory health effects of man-made vitreous (mineral) fibers. Eur Respir J 8:2149–2173. doi:10.1183/09031936.95.08122149

    Article  Google Scholar 

  42. International Agency for Research on Cancer (2002) IARC monographs on the evaluation of carcinogenic risks to humans—Man-man vitreous fibers. http://monographs.iarc.fr/ENG/Monographs/vol81/mono81.pdf 81 Accessed: 31.1.2013

  43. Baan RA, Grosse Y (2004) Man-made mineral (vitreous) fibres: evaluations of cancer hazards by the IARC monographs programme. Mutat ResFundam Mol Mech Mutagen 553:43–58 doi: 10.1016/j.mrfmmm.2004.06.019

  44. European Chemicals Agency (2013) REACH classification table for Man-made vitreous (silicate) fibres with random orientation with alkaline oxide and alkali earth oxide (Na2O + K2O + CaO + MgO + BaO) content greater than 18% by weight page. http://clp-inventory.echa.europa.eu/SummaryOfClassAndLabelling.aspx?SubstanceID=153559&HarmOnly=no?fc=true&lang=en Accessed: 7.2.2013

  45. Bernstein DM (2007) Synthetic vitreous fibers: a review toxicology, epidemiology and regulations. Crit Rev Toxicol 37:839–886. doi:10.1080/10408440701524592

    Article  Google Scholar 

  46. Wang JY, Touran A, Christoforou C, Fadlalla H (2004) A systems analysis tool for construction and demolition wastes management. Waste Manag 24:989–997. doi:10.1016/j.wasman.2004.07.010

    Article  Google Scholar 

  47. The Department for Environment, Food and Rural Affairs (UK) (2008) Insulation waste management. http://efficient-products.defra.gov.uk/spm/download/document/id/704 Accessed: 22 January 2013

  48. Dunster A M (2007) Characterisation of mineral wastes, resources and processing technologies – Integrated waste management for production of construction material. Industry Sector Study: Mineral wool insulation http://www.euresp-plus.net/sites/default/files/uploads/Mineral%20wool%20sector%20case%20study.pdf Accessed: 22 January 2013

  49. Mulder E, de Jong TPR, Feenstra L (2007) Closed cycle construction: an integrated process for the separation and reuse of C&D waste. Waste Manag 27:1408–1415. doi:10.1016/j.wasman.2007.03.013

    Article  Google Scholar 

  50. BRE Group, Eurobond (2008) Recycling of mineral wool composites panels into new raw materials. http://www.wrap.org.uk/sites/files/wrap/xx%20Eurobond_WRAP.pdf Accessed: 22 January 2013

  51. Poon CS, Yu ATW, Ng LH (2001) On-site sorting of construction and demolition waste in Hong Kong. Resour Conserv Recycl 32:157–172. doi:10.1016/S0921-3449(01)00052-0

    Article  Google Scholar 

  52. Cha HS, Kim KH, Kim CK (2012) Case study on selective demolition method for refurbishing deteriorated residential apartments. J Constr Eng Manag 138:294–303. doi:10.1061/(ASCE)CO.1943-7862.0000424

    Article  Google Scholar 

  53. Kourmpanis B, Papadopoulos A, Moustakas K, Stylianou M, Haralambous KJ, Loizidou M (2008) Preliminary study for the management of construction and demolition waste. Waste Manag Res 26:267–275. doi:10.1177/0734242X07083344

    Article  Google Scholar 

  54. Peng C-L, Scorpio DE, Kibert CJ (1997) Strategies for successful construction and demolition waste recycling operations. Constr Manag Econ 15:49–58

    Article  Google Scholar 

  55. Linß E, Ludwig H-M, Anding K (2013) Study of the identification of aggregates of construction and demolition waste by using object recognition methods. In: life-cycle and sustainability of civil infrastructure systems—proceedings of the 3rd international symposium on life-cycle civil engineering, IALCCE 2012 2188–2195

  56. Meinander M (ed.), Mroueh U-M (ed.), Bacher J, Laine-Ylijoki J, Wahlström M, Jermakka J, Teirasvuo N, Kuosa H, Törn M, Laaksonen J, Heiskanen J, Kaila J, Vanhanen H, Dahlbo H, Saramäki K, Jouttijärvi T, Mattila T, Retkin R, Suoheimo P, Lähtinen K, Sironen S, Sorvari J, Myllymaa T, Havukainen J, Horttanainen M, Luoranen M (2012) Directions of future developments in waste recycling. http://www.vtt.fi/inf/pdf/technology/2012/T60.pdf Accessed: 22 January 2013

  57. Yuan HP, Shen LY, Hao JJL, Lu WS (2011) A model for cost–benefit analysis of construction and demolition waste management throughout the waste chain. Resour Conserv Recycl 55:604–612. doi:10.1016/j.resconrec.2010.06.004

    Article  Google Scholar 

  58. Duran X, Leninhan H, O’Regan B (2006) A model for assessing the economic viability of construction and demolition waste recycling—the case of Ireland. Resour Conserv Recycl 46:302–320. doi:10.1016/j.resconrec.2005.08.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olli Väntsi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Väntsi, O., Kärki, T. Mineral wool waste in Europe: a review of mineral wool waste quantity, quality, and current recycling methods. J Mater Cycles Waste Manag 16, 62–72 (2014). https://doi.org/10.1007/s10163-013-0170-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-013-0170-5

Keywords

Navigation