Skip to main content

Advertisement

Log in

Leachate generation and biogas energy recovery in the Jebel Chakir municipal solid waste landfill, Tunisia

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

A survey was conducted between 2006 and 2008 in order to identify municipal solid waste (MSW) composition and its influence on leachate generation and to assess the amount of biogas yield from the Jebel Chakir landfill in Tunis City. The organic fraction was the predominant compound in the MSW, followed by paper, fine, plastic, leather, rubber, metal, textile, glass and ceramic. The average MSW moisture content varies from 60 % in the wet season to 80 % in the dry one. The recognised MSW composition is well representative if compared to that of cities in developing countries. A large leachate quantity is produced in the landfill of Jebel Chakir, despite the negative water balance of the site. Based on the annual MSW landfilled quantities and using the LandGEM model, the expected peak landfill gas (LFG) production is estimated to occur 1 year after the landfill closure with a rate of 3.53 × 107 m3/year. The analysis of the potential conversion of LFG to electric energy shows it at a total LFG-to-electricity energy of around 257 GWh with a heating value of 4,475 kcal/m3 based on an LFG collection efficiency of 33 % and energy efficiency of 33 % giving an economic feasibility for a 10 MW power plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. El-Fadel M, Bou-Zeid E, Chahine W, Alayli B (2002) Temporal variation on leachate quality room pre-sorted and baled municipal solid waste with high organic and moisture content. Waste Manage (Oxford) 22:269–282

    Article  Google Scholar 

  2. Tchobanoglous G, Theisen H, Vigil SA (1993) Integrated solid waste management. Engineering principles and management issues. Mc-GrawHill, New York

    Google Scholar 

  3. Sharholy M, Ahmad K, Mahmood G, Trivedi RC (2008) Municipal solid waste management in Indian cities. Waste Manage (Oxford) 28:459–467

    Article  Google Scholar 

  4. Guermoud N, Ouadjnia F, Abdelmalek F, Taleb F, Addou A (2009) Municipal solid waste in Mostaganem city (Western Algeria). Waste Manage (Oxford) 29:896–902

    Article  Google Scholar 

  5. Hull RM, Krogmann U, Strom PF (2005) Composition and characteristics of excavated materials from a New Jersey landfill. J Environ Eng 131:478–490

    Article  Google Scholar 

  6. Yousuf TB, Rahman M (2007) Monitoring quantity and characteristics of municipal solid waste in Dhaka City. Environ Monit Assess 135:3–11

    Article  Google Scholar 

  7. Chiriac R, Carre J, Perrodin Y, Fine L, Letoffe JM (2007) Characterisation of VOCs emitted by open cells receiving municipal solid waste. J Hazard Mater 149:249–263

    Article  Google Scholar 

  8. Ehrig HJ (1983) Quality and quantity of sanitary landfill leachate. Waste Manage Res 1:53–68

    Google Scholar 

  9. Intergovernmental Panel on Climate Change (IPCC) (2007) Fourth Assessment Report. Climate Change 2007: Synthesis Report. Topic 2. Causes of Change, pp 35–41

  10. Zamorano M, Pérez JI, Pavés IA, Ridao ÁR (2007) Study of the energy potential of the biogas produced by an urban waste landfill in Southern Spain. Renew Sustain Energy Rev 11:909–922

    Article  Google Scholar 

  11. Bove R, Lunghi P (2006) Electric power generation from landfill gas using traditional and innovative technologies. Energy Convers Manage 47:1391–1401

    Article  Google Scholar 

  12. Saidi N, Cherif M, Jedidi N, Mahrouk M, Fumio M, Boudabous A, Hassen A (2008) Evolution of biochemical parameters during composting of various wastes compost. Am J Environ Sci 4:332–341

    Article  Google Scholar 

  13. MEDD-Ministère de l’Environnement et de Développement Durable (2005) Etat de l’environnement. Rapport national sur l’état de l’environnement en Tunisie

  14. Tizaoui C, Bouselmi L, Mansouri L, Ghrabi A (2006) Landfill leachate treatment with ozone and ozone/hydrogen peroxide systems. J Hazard Mater 140:316–324

    Article  Google Scholar 

  15. MODECOM (Méthode de caractérisation des ordures ménagères) (1993) Methodology for municipal solid waste characterization. ADEME Report, 1601-2766, 2nd edn

  16. François V (2004) Détermination d’indicateurs d’accélération et de stabilisation de déchets ménagers enfouis. Etude de l’impact de la recirculation de lixiviats sur colonnes de déchets, thèse de doctorat, Université de Limoges

  17. Khan AMZ, Abu-Ghararah ZH (1991) New approaches for estimating energy content in MSW. ASCE J Environ Eng 117:376–380

    Article  Google Scholar 

  18. Norme Européenne (NF EN ISO 11885) (1998) Dosage de 33 éléments par spectrométrie d’émission atomique avec plasma couplé par induction

  19. Abu-Qudais HA (2007) Techno-economic assessment of municipal solid waste management in Jordan. Waste Manage (Oxford) 27:1666–1672

    Article  Google Scholar 

  20. Imam A, Mohammed B, Wilson DC, Cheeseman CR (2008) Solid waste management in Abuja, Nigeria. Waste Manage (Oxford) 28:468–472

    Article  Google Scholar 

  21. Moghadam MRA, Mokhtarni N, Mokhtarni B (2009) Municipal solid waste management in Rasht City, Iran. Waste Manag 29:485–489

    Article  Google Scholar 

  22. Aloueimine SO (2006) MSW characterization methodology in Nouakchott, Mauritania, PhD thesis. Limoges University

  23. Gidarakos E, Havas G, Ntzamilis P (2006) Municipal solid waste composition determination supporting the integrated solid waste management system in the island of Crete. Waste Manage (Oxford) 26:668–679

    Article  Google Scholar 

  24. Jin J, Wang Z, Ran S (2006) Solid waste management in Macao: practices and challenges. Waste Manage (Oxford) 26:1045–1051

    Article  Google Scholar 

  25. Cointreau-Levine S (1997) Occupational and environmental health issues of solid waste management. International Occupational and Environmental Medicine, St. Louis (USA)

    Google Scholar 

  26. Tezanou J, Koulidiati J, Proust M, Sougoti M, Goudeau JC, Kafandou P, Progaume T (2001) Characterization of MSW in Ouagadougou city (Burkina Faso). Ouagadougou University, Burkina Faso

    Google Scholar 

  27. Chong TL, Matsufuji Y, Hassan MN (2005) Implementation of semi-aerobic landfill system (Fukuoka method) in developing countries: a Malaysia cost analysis. Waste Manage (Oxford) 25:702–711

    Article  Google Scholar 

  28. Aina MP (2006) MSW Landfills techniques in developing countries: methodology and experimental applications, PhD thesis, Limoges University

  29. Mohee R (2002) Assessing the recovery potential of solid waste in Mauritius. Resour Conserv Recycl 36:34–43

    Google Scholar 

  30. Mbuligwe SE, Kassenga GR (2004) Feasibility and strategies for anaerobic digestion of solid waste for energy production in Dar EsSalaam city, Tanzania. Resour Conserv Recycl 42:183–203

    Article  Google Scholar 

  31. Zahrani F (2006) Contribution à l’élaboration et validation d’un protocole d’audit destiné à comprendre les dysfonctionnements des centres de stockages des déchets (CSD) dans les pays en développement. Application à deux CSD: Nkolfoulou (Caméroun) et Essaouira (Maroc), Thèse de doctorat, Institut National des Sciences Appliquées de Lyon, France

  32. Ben Ammar S (2006) Les enjeux de la caractérisation des déchets ménagers pour le choix de traitement adaptés dans les pays en voie de développement: résultats de la caractérisation dans le grand Tunis mise au point d’une méthode adaptée, Thèse de doctorat, INPL, France

  33. Abu-Qudais M, Abu-Qdais HA (2000) Energy content of municipal solid waste in Jordan and its potential utilization. Energy Convers Manage 41:983–991

    Article  Google Scholar 

  34. Espinosa L, Torres ML, Alvarez H, Arrechea AP, Garcia JA, Aguirre SD, Fernandez A (2008) Characterization of municipal solid waste from the main landfills of Havana city. Waste Manage (Oxford) 28:2013–2021

    Article  Google Scholar 

  35. US EPA (United States Environmental Protection Agency) (1993) Standards for the Use and Disposal of Sewage Sludge; Final Rules, 40 CFR Parts 257, 403, and 503. Federal Register 58:9248–9415

    Google Scholar 

  36. Paraskaki I, Lazaridis M (2005) Quantification of landfill emissions to air: a case study of the Ano Liosia landfill site in the greater Athens area. Waste Manage Res 23:199–208

    Article  Google Scholar 

  37. US EPA (2005) LandGEM, Version 3.02. http://www.epa.gov/ttncatc1/dir1/LandGEM-v302-guide.pdf

  38. Thompson S, Sawyer J, Bonam R, Valdivia JE (2009) Building a better methane generation model: validating models with methane recovery rates from 35 Canadian landfills. Waste Manage (Oxford) 29:2085–2091

    Article  Google Scholar 

  39. Ritzkowski M, Stegmann R (2010) Generating CO2-credits through landfill in situ aeration. Waste Manage (Oxford) 30:702–706

    Article  Google Scholar 

  40. IPCC (2006) IPCC Guidelines for National Greenhouse Gas Inventories, vol. 5 (Chapters 2 and 3). http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.htm

  41. US EPA (2004) Quantification of exposure: development of the emissions inventory for the inhalation risk assessment (Chapter 7)

  42. Abu-Qdais H, Abdullah F, Qrenawi L (2010) Solid waste landfills as a source of green energy: case study of Al Akeeder Landfill. Jordan J Mech Ind Eng 4:69–74

    Google Scholar 

  43. Karapidakis ES, Tsave AA, Soupios PM, Katsigiannis YA (2010) Energy efficiency and environmental impact of biogas utilization in landfills. Int J Environ Sci Tech 7:599–608

    Article  Google Scholar 

  44. Abreu FV, Avelino MR, Souza MCL, Monaco DP (2011) Technical and economical feasibility analysis of energy generation though the biogas from waste in landfill. J Petrol Technol Altern Fuels 2:95–102

    Google Scholar 

  45. SCS Engineers (2008) Pre-feasibility study for landfill gas recovery and utilization at the Loma de Los Cocos Landfill Cartagena de Indias, Colombia

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moncef Zairi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zairi, M., Aydi, A. & Dhia, H.B. Leachate generation and biogas energy recovery in the Jebel Chakir municipal solid waste landfill, Tunisia. J Mater Cycles Waste Manag 16, 141–150 (2014). https://doi.org/10.1007/s10163-013-0164-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-013-0164-3

Keywords

Navigation