Skip to main content
Log in

Stabilization of sewage sludge in the presence of nanoscale zero-valent iron (nZVI): abatement of odor and improvement of biogas production

  • SPECIAL FEATURE: ORIGINAL ARTICLE
  • The 7th International Conference on Waste Management and Technology (ICWMT) 2012
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

The potential benefits of nanoscale zero-valent iron (nZVI) on sludge stabilization, either the abatement of odor or the improvement of biogas production, were investigated in this study. Two commercial-grade microscale iron powders were also utilized for comparison. Adding 0.10 wt% of nZVI in sludge during anaerobic incubation significantly reduced the concentration of H2S in biogas by 98.0 % (96.2–98.9 %), probably attributed by reactions between sulfides and the neo-formed hydrous Fe(II)/Fe(III) oxides layer at the surface of ZVI nanoparticles. Meanwhile, the percentage of P in bioavailable fractions decreased from 76.8 to 52.5 %, possibly due to the formation of vivianite [Fe3(PO4)2]. Furthermore, 0.10 wt% of nZVI in anaerobic digestion for 17 days enhanced the concentration of CH4 in biogas by 5.1–13.2 % and improved the production of biogas and methane by 30.4 and 40.4 %, respectively. The amendment of iron nanoparticles during anaerobic digestion can not only effectively reduce H2S in biogas, but also potentially boost methane production significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Ye W, Han J, Qin LB, Li YQ, Masami F, Yao H (2012) Emission characteristics of PM10 during sewage sludge combustion. Aerosol Air Qual Res 12(3):420–425. doi:10.4209/aaqr.2011.10.0164

    Google Scholar 

  2. Díaz I, Lopes AC, Pérez SI, Fdz-Polanco M (2010) Performance evaluation of oxygen, air and nitrate for the microaerobic removal of hydrogen sulphide in biogas from sludge digestion. Bioresour Technol 101(20):7724–7730. doi:10.1016/j.biortech.2010.04.062

    Article  Google Scholar 

  3. Mostbauer P, Lenz S, Lechner P (2008) MSWI bottom ash for upgrading of biogas and landfill gas. Environ Technol 29(7):757–764. doi:10.1080/09593330801987061

    Article  Google Scholar 

  4. Tang YQ, Shigematsu T, Ikbal, Morimura S, Kida K (2004) The effects of micro-aeration on the phylogenetic diversity of microorganisms in a thermophilic anaerobic municipal solid-waste digester. Water Res 38(10):2537–2550. doi:10.1016/j.watres.2004.03.012

    Article  Google Scholar 

  5. Bruno P, Caselli M, de Gennaro G, Solito M, Tutino M (2007) Monitoring of odor compounds produced by solid waste treatment plants with diffusive samplers. Waste Manage 27(4):539–544. doi:10.1016/j.wasman.2006.03.006

    Article  Google Scholar 

  6. Lens PNL, Pol LWH (2000) Environmental technologies to treat sulfur pollution: principles and engineering. IWA Publishing, London

    Google Scholar 

  7. Deublein D, Steinhauser A (2008) Biogas from waste and renewable resources: an introduction. Wiley-VCH, Weinheim

    Book  Google Scholar 

  8. Firer D, Friedler E, Lahav O (2008) Control of sulfide in sewer systems by dosage of iron salts: comparison between theoretical and experimental results, and practical implications. Sci Total Environ 392(1):145–156. doi:10.1016/j.scitotenv.2007.11.008

    Article  Google Scholar 

  9. Fox P, Venkatasubbiah V (1996) Coupled anaerobic/aerobic treatment of high-sulfate wastewater with sulfate reduction and biological sulfide oxidation. Water Sci Technol 34(5–6):359–366. doi:10.1016/0273-1223(96)00666-X

    Article  Google Scholar 

  10. Khanal SK, Huang JC (2003) ORP-based oxygenation for sulfide control in anaerobic treatment of high-sulfate wastewater. Water Res 37(9):2053–2062. doi:10.1016/S0043-1354(02)00618-8

    Article  Google Scholar 

  11. Su LH, Zhao YC (2012) Chemical reduction of odour in fresh sewage sludge in the presence of ferric hydroxide. Environ Technol 34(2):165–172. doi:10.1080/09593330.2012.689362

    Article  Google Scholar 

  12. Karn B, Kuiken T, Otto M (2011) Nanotechnology and in situ remediation: a review of the benefits and potential risks. Ciênc Saúde Coletiva 16(1):165–178

    Article  Google Scholar 

  13. Tratnyek PG, Johnson RL (2006) Nanotechnologies for environmental cleanup. Nano Today 1(2):44–48. doi:10.1016/S1748-0132(06)70048-2

    Article  Google Scholar 

  14. Li XQ, Brown DG, Zhang WX (2007) Stabilization of biosolids with nanoscale zero-valent iron (nZVI). J Nanopart Res 9(2):233–243. doi:10.1007/s11051-006-9187-1

    Article  Google Scholar 

  15. Yan WL, Herzing AA, Kiely CJ, Zhang WX (2010) Nanoscale zero-valent iron (nZVI): aspects of the core-shell structure and reactions with inorganic species in water. J Contam Hydrol 118(3–4):96–104. doi:10.1016/j.jconhyd.2010.09.003

    Article  Google Scholar 

  16. Martin JE, Herzing AA, Yan WL, Li XQ, Koel BE, Kiely CJ, Zhang WX (2008) Determination of the oxide layer thickness in core-shell zerovalent iron nanoparticles. Langmuir 24(8):4329–4334. doi:10.1021/La703689k

    Article  Google Scholar 

  17. Sun YP, Li XQ, Cao JS, Zhang WX, Wang HP (2006) Characterization of zero-valent iron nanoparticles. Adv Colloid Interface 120(1–3):47–56. doi:10.1016/j.cis.2006.03.001

    Article  Google Scholar 

  18. Karri S, Sierra-Alvarez R, Field JA (2005) Zero valent iron as an electron-donor for methanogenesis and sulfate reduction in anaerobic sludge. Biotechnol Bioeng 92(7):810–819. doi:10.1002/Bit.20623

    Article  Google Scholar 

  19. Zhen GY, Lu XQ, Cheng XB, Chen H, Yan XF, Zhao YC (2012) Hydration process of the aluminate 12CaO·7Al2O3-assisted Portland cement-based solidification/stabilization of sewage sludge. Constr Build Mater 30:675–681. doi:10.1016/j.conbuildmat.2011.12.049

    Article  Google Scholar 

  20. Smith JA, Carliell-Marquet CM (2008) The digestibility of iron-dosed activated sludge. Bioresour Technol 99(18):8585–8592. doi:10.1016/j.biortech.2008.04.005

    Article  Google Scholar 

  21. Smith JA, Carliell-Marquet CM (2009) A novel laboratory method to determine the biogas potential of iron-dosed activated sludge. Bioresour Technol 100(5):1767–1774. doi:10.1016/j.biortech.2008.10.004

    Article  Google Scholar 

  22. Wieckowska J (1995) Catalytic and adsorptive desulphurization of gases. Catal Today 24(4):405–465. doi:10.1016/0920-5861(95)00021-7

    Article  Google Scholar 

  23. Cantrell KJ, Yabusaki SB, Engelhard MH, Mitroshkov AV, Thornton EC (2003) Oxidation of H2S by iron oxides in unsaturated conditions. Environ Sci Technol 37(10):2192–2199. doi:10.1021/Es020994o

    Article  Google Scholar 

  24. Wang CM, Baer DR, Amonette JE, Engelhard MH, Antony J, Qiang Y (2009) Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. J Am Chem Soc 131(25):8824–8832. doi:10.1021/Ja900353f

    Article  Google Scholar 

  25. Shu ZY, Wang J, Huang Y (2011) Study of inactivating sulfate reducing bacteria with zero-valent iron nanoparticles (in Chinese). Environ Sci 32(10):3040–3044

    Google Scholar 

  26. Dinh HT, Kuever J, Mussmann M, Hassel AW, Stratmann M, Widdel F (2004) Iron corrosion by novel anaerobic microorganisms. Nature 427(6977):829–832. doi:10.1038/Nature02321

    Article  Google Scholar 

  27. Gu BH, Watson DB, Wu LY, Phillips DH, White DC, Zhou JZ (2002) Microbiological characteristics in a zero-valent iron reactive barrier. Environ Monit Assess 77(3):293–309. doi:10.1023/A:1016092808563

    Article  Google Scholar 

  28. Bhattacharya SK, Uberoi V, Dronamraju MM (1996) Interaction between acetate fed sulfate reducers and methanogens. Water Res 30(10):2239–2246. doi:10.1016/0043-1354(95)00238-3

    Article  Google Scholar 

  29. Carliell-Marquet C (2000) The effect of phosphorus enrichment on fractionation of metals and phosphorus in anaerobically digested sludge. Dissertation, Loughborough University of Technology

Download references

Acknowledgments

This work was financially supported by the Science and Technology Commission of Shanghai Municipality (No. 10DZ1200104), Tongji University Institute for Advanced Study (No. 0400219152), and the National Natural Science Foundation of China (No. 51278350).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youcai Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, L., Shi, X., Guo, G. et al. Stabilization of sewage sludge in the presence of nanoscale zero-valent iron (nZVI): abatement of odor and improvement of biogas production. J Mater Cycles Waste Manag 15, 461–468 (2013). https://doi.org/10.1007/s10163-013-0150-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-013-0150-9

Keywords

Navigation