Skip to main content
Log in

Removal of inorganic colour pigments from acrylonitrile butadiene styrene by dissolution-based recycling

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Reinserting thermoplastic industrial scrap materials back into the production process must be feasible and cost-effective. Unfortunately, many thermoplastic materials contain colour pigments that cause undesired colour effects and, therefore, have to be removed before recycling. The purpose of this study was to reduce the inorganic colour pigments titanium dioxide, chromium(III) oxide and iron(III) oxide from acrylonitrile butadiene styrene. Based on experiences with dissolution-based polymer recycling, the two methods for removing these colour pigments studied in this project were filtration and centrifugation. Multiple laboratory-scale experiments were performed with two solvent formulations, acetone and CreaSolv® SB. Using the filtration method, both solvent formulations achieved reduction rates of 80% for titanium and iron and 90% for chromium. While similar reduction rates were obtained with high-speed laboratory-type centrifuges for acetone solutions, the results for CreaSolv® SB solutions were considerably lower under the same experimental conditions. Increasing the temperature or centrifugation speed, however, will also increase the reduction rates. Thereby, CreaSolv® SB solutions become suitable for industrial-scale processes. This is important because industrial processes based on CreaSolv® SB solutions are significantly safer than acetone-based processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Delgado C, Barruetabeña L, Salas O (2007) Assessment of the environmental advantages and drawbacks of existing and emerging polymers recovery processes. Office for Official Publications of the European Communities, Luxemburg, p 19

    Google Scholar 

  2. García MT, Duque G, Gracia I, de Lucas A, Rodríguez JF (2009) Recycling extruded polystyrene by dissolution with suitable solvents. J Mater Cycles Waste Manag 11:2–5

    Article  Google Scholar 

  3. Völz HG (2006) Pigments, inorganic. In: Pelc H, Elvers B, Hawkins S, Harrer R, Pikart-Müller M (eds) Ullmann’s encyclopedia of industrial chemistry, 7th edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  4. Gneuss Kunststofftechnik GmbH (2005) ABS compounding: meeting the filtration demands. Plast Addit Compd 7(4):38–40

    Article  Google Scholar 

  5. Hannemann A (2006) Compounding with process-constant melt filtration. Plast Addit Compd 8(2):34–38

    Article  Google Scholar 

  6. Gneuss. Home page at: http://www.gneuss.de. Accessed 15 Dec 2008

  7. Gächter R, Müller H (1990) Taschenbuch der Kunststoff-Additive, 3rd edn. Carl Hanser Verlag München Wien, München, p 663 (in German)

    Google Scholar 

  8. Arostegui A, Sarrionandia M, Aurrekoetxea J, Urrutibeascoa I (2006) Effect of dissolution-based recycling on the degradation and the mechanical properties of acrylonitrile–butadiene–styrene copolymer. Polym Degrad Stab 91:2768–2774

    Article  Google Scholar 

  9. Schlummer M, Mäurer A, Leitner T, Spitzbart M (2007) Recycling of polymers from WEEE. In: Kompetenzzentrum Elektronik & Umwelt GmbH (KERP) (ed) ECO-X: Sustainable Recycling Management & Recycling Network Centrope. Proceedings of the 2nd International Conference (ECO-X 2007), Vienna, Austria, May 2007, pp 185–186

  10. Poulakis JG, Papaspyrides CD (1997) Recycling of polypropylene by the dissolution/reprecipitation technique: I. A model study. Resour Conserv Recycl 20(1):31–41

    Article  Google Scholar 

  11. Stoye D (2005) Solvents. In: Pelc H, Elvers B, Hawkins S, Harrer R, Pikart-Müller M (eds) Ullmann’s encyclopedia of industrial chemistry, 7th edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  12. Notari M, Rivetti F (2005) Use of dialkyl carbonates as solvents for expanded polystyrene. Patent WO 2005/023922 A1

  13. Fassiau E, Lepers J-C, Lannoy M (2006) Process for the purification of vinyl chloride polymers (PVC) from heavy metals. Patent WO 2006/053907

  14. Brownscombe TF, Fong HL, Diaz Z, Chuah HH, June RL, Rollick KL, Semple TC, Tompkin MR (1995) Process for recycling mixed polymer containing polyethylene terephthalate. Patent US 5554657 A

  15. Gösele W, Christian A (2005) Filtration. In: Pelc H, Elvers B, Hawkins S, Harrer R, Pikart-Müller M (eds) Ullmann’s encyclopedia of industrial chemistry, 7th edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  16. Kobelco, Kobe Steel Group (2007) Products, technologies and services to benefit the environment. Available online at: http://www.kobelco.co.jp/english/environment/2007/1179137_9625.html. Accessed 26 Feb 2011

  17. Asadi M (2007) Filter aids and settling aids. In: Asadi M (ed) Beet-sugar handbook. Wiley, Hoboken, p 277

    Google Scholar 

  18. Siebert M (1997) Entfärben von Thermoplasten beim Recycling über Lösen. Technische Universität Berlin, Berlin, pp 44–51 (in German)

    Google Scholar 

  19. Altenau G (2001) MAK-Wert allein reicht nicht. Chemie Technik 05:60–62 (in German)

    Google Scholar 

  20. Mäurer A, Schlummer M (2004) Good as new. Recycling plastics from WEEE and packaging waste. Waste Manag World 4(3):33–43

    Google Scholar 

  21. GESTIS—database on hazardous substances. Information system on hazardous substances of the German Social Accident Insurance. Home page at: http://www.dguv.de/bgia/de/gestis/stoffdb/index.jsp. Accessed 18 Dec 2008

  22. Lei Q-F, Hou Y-C, Lin R-S (1997) Correlation of viscosities of pure liquids in a wide temperature range. Fluid Phase Equilib 140(1–2):221–231

    Google Scholar 

  23. Axelsson H, Madsen B (2009) Centrifuges, sedimenting. In: Pelc H, Elvers B, Hawkins S, Harrer R, Pikart-Müller M (eds) Ullmann’s encyclopedia of industrial chemistry, 7th edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Google Scholar 

  24. Schlummer M, Gruber L, Mäurer A, Wolz G, van Eldik R (2007) Characterisation of polymer fractions from waste electrical and electronic equipment (WEEE) and implications for waste management. Chemosphere 67:1866–1876

    Article  Google Scholar 

  25. Denis R (2007) Cost-effective recovery of virgin quality PE and PP fractions from shredder residue. In: Proceedings of the 7th International Automobile Recycling Congress (IARC 2007), Amsterdam, the Netherlands, March 2007

  26. Osada M, Tanigaki N, Takahashi S, Sakai S (2008) Brominated flame retardants and heavy metals in automobile shredder residue (ASR) and their behavior in the melting process. J Mater Cycles Waste Manag 10:93–101

    Article  Google Scholar 

  27. Arends D (2009) SpectroDense für Elektroaltgeräte: von der Demontage zum hochwertigen Rezyklat. Kongress Zukunft Kunststoff-Verwertung 2009, Krefeld, Germany (in German)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmar Arends.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arends, D., Schlummer, M. & Mäurer, A. Removal of inorganic colour pigments from acrylonitrile butadiene styrene by dissolution-based recycling. J Mater Cycles Waste Manag 14, 85–93 (2012). https://doi.org/10.1007/s10163-012-0041-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-012-0041-5

Keywords

Navigation