The contemporary Asian silver cycle: 1-year stocks and flows

  • Jeremiah Johnson
  • Marlen Bertram
  • Kathryn Henderson
  • Julie Jirikowic
  • T. E. Graedel


The stocks and flows of silver throughout the Asian economy for 1997 have been quantified, with major flows examined over their entire life cycle, including mining, production, fabrication, and manufacture, product use, and waste management. By compiling the findings of 11 country-level material flow analyses, a regional analysis was created. The reliability and availability of the data varied, with the most confidence given to the earlier life stages and the most uncertainty existing later. Overall, Asia is a net importer of silver, requiring nearly 7000 Mg of silver in 1997. Approximately 2200 Mg Ag are mined, and production waste totals about 640 Mg Ag. The flow of silver into use equals 9900 Mg Ag, with a considerable build-up of 7100 Mg Ag entering in-use stock. Silver waste sent directly to the environment, in addition to landfilled waste, totals 1600 Mg Ag. Much variation exists when examining country-level silver flows on a per capita basis. India and Thailand’s fondness for silver jewelry greatly increases their silver flows into use and in-use stock. Japan’s high overall consumption reflects its high GDP per capita. Regionally, a significant potential exists to tap the silver contained in the in-use stocks and to enhance the recycling rates.

Key words

Resource management Material budgets Silver Asia Waste management 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lifset, RJ, Gordon, RB, Graedel, TE, Spatari, S, Bertram, M 2002Where has all the copper gone? The stocks and flows project. Part 1JOM – J Min Met Mat S542126Google Scholar
  2. 2.
    Spatari, S, Bertram, M, Fuse, K, Graedel, TE, Rechberger, H 2002The contemporary European copper cycle: 1-year stocks and flowsEcol Econ422742CrossRefGoogle Scholar
  3. 3.
    Kapur, A, Bertram, M, Spatari, S, Fuse, K, Graedel, TE 2002The contemporary copper cycle for AsiaJ Mater Cycles Waste Manag5143156CrossRefGoogle Scholar
  4. 4.
    Graedel, TE, Klee, RJ 2002Getting serious about sustainabilityEnviron Sci Technol36523529CrossRefPubMedGoogle Scholar
  5. 5.
    Hansen, E, Lassen, C 2003Experience with the use of substance flow analysis in DenmarkJ Ind Ecol6201219CrossRefGoogle Scholar
  6. 6.
    Baccini, P, Brunner, PH 1991Metabolism of the anthroposphereSpringerNew YorkGoogle Scholar
  7. 7.
    Jasinski, S 1995The material flow of mercury in the United StatesResour Conserv Recy15145179CrossRefGoogle Scholar
  8. 8.
    Reuter, M 1998The simulation of industrial ecosystemsMiner Eng11891918CrossRefGoogle Scholar
  9. 9.
    Moriguchi, Y 1999Recycling and waste management from the viewpoint of material flow accountingJ Mater Cycles Waste Manag129Google Scholar
  10. 10.
    Eurostat,  2001Economy-wide material flow accounts and dervied indicators: a methodological guideOffice for the Official Publications of European CommunitiesLuxembourgGoogle Scholar
  11. 11.
    Bringezu, S 2003

    Industrial ecology and material flow analysis

    Bourg, DErkman, S eds. Perspectives on industrial ecologyGreenleaf PublishingVienna
    Google Scholar
  12. 12.
    Thomas, VM, Graedel, TE 2003Research issues in sustainable consumption: toward an analytical framework for materials and the environmentEnviron Sci Technol3753835388CrossRefPubMedGoogle Scholar
  13. 13.
    Graedel, TE, Van Beers, D, Bertram, M, Fuse, K, Gordon, RB, Gritsinin, A, Kapur, A, Klee, RJ, Lifset, RJ, Memon, L, Rechberger, H, Spatari, S, Vexler, D 2004Multilevel cycle of anthropogenic copperEnviron Sci Technol3812421252PubMedGoogle Scholar
  14. 14.
    Gordon, RB, Graedel, TE, Bertram, M, Fuse, K, Lifset, R, Rechberger, H, Spatari, S 2003The characterization of technological zinc cyclesResour Conserv Recy39107135CrossRefGoogle Scholar
  15. 15.
    Spatari, S, Bertram, M, Fuse, K, Graedel, TE, Shelov, E 2003The contemporary European zinc cycle: 1-year stocks and flowsResour Conserv Recy39137160CrossRefGoogle Scholar
  16. 16.
    Graedel, TE, Allenby, BR 2003Industrial ecology2nd edn.Prentice HallEnglewood CliffsGoogle Scholar
  17. 17.
    Kesler, SE 1994Mineral resources, economics, and the environmentMacmillanNew YorkGoogle Scholar
  18. 18.
    Silver Institute (2004), accessed March 30, 2004Google Scholar
  19. 19.
    Agency for Toxic Substances and Disease Registry (ATSDR) (1990) Toxicological profile for silver. US Department of Health and Human Services, Public Health Service, AtlantaGoogle Scholar
  20. 20.
    Lanzano T, Bertram M, DePalo M, Wagner C, Zyla K, Graedel T (2005) The contemporary European silver cycle: 1- year stocks and flows. Resour Conserv Recy (in press)Google Scholar
  21. 21.
    Henderson K (2003) The contemporary silver cycle for CIS countries: using industrial ecology to evaluate silver flows. J Young Invest 9 (1):available online at Scholar
  22. 22.
    Johnson, J, Jirikowic, J, Bertram, M, van Beers, D, Gordon, RB, Henderson, K, Klee, RJ, Lanzano, T, Lifset, R, Oetjen, L, Graedel, TE 2005Contemporary anthropogenic silver cycle: A multilevel analysisEnviron Sci Technol3946554665CrossRefPubMedGoogle Scholar
  23. 23.
    World Bank (2003), accessed July–October 2003Google Scholar
  24. 24.
    United Nations Comtrade Database (2003), accessed July–October 2003Google Scholar
  25. 25.
    Central Intelligence Agency (CIA) (2003), accessed July–October 2003Google Scholar
  26. 26.
    Gold Fields Mineral Services Ltd.2002World Silver SurveyThe Silver InstituteWashington, DCGoogle Scholar
  27. 27.
    Wagner C (2002) Methodology and documentation to determine silver flows in production and waste management systems of STAF-Europe 1997. Unpublished report. Center for Industrial Ecology, Yale University, New HavenGoogle Scholar
  28. 28.
    Tse, P 1997The mineral industry of ChinaUnited States Geological SurveyRestonGoogle Scholar
  29. 29.
    Errecart J, Graedel TE (2002) A characterization of the year 2000 United States silver cycle. Unpublished report. Center for Industrial Ecology, Yale University, New HavenGoogle Scholar
  30. 30.
    Barlett, R 1994Solution miningGordon and BreachPhiladelphiaGoogle Scholar
  31. 31.
    Group, CPM 2001CPM group’s silver survey 2001CPM GroupNew YorkGoogle Scholar
  32. 32.
    Hilliard H (2003) Circular 1196-N: silver recycling in the United States. United States Geological Survey, RestonGoogle Scholar
  33. 33.
    Langer, B 1994Recycling von Elektronikschrott (in German)Metall48880885Google Scholar
  34. 34.
    Siemers, W, Vest, H 1999Environmental handbook: environmentally sound electroscrap disposal and recyclingDeutsche Gesellschaft fur Technische ZusammenarbeitEschborn, GermanyGoogle Scholar
  35. 35.
    (2000) Abwasserrelevante Silberstrome in Wien, Im Auftrag der Magistratsabteilung 22 (in German). Umweltschutz der Stadt Wein, Ressourcen Management Agentur, AustriaGoogle Scholar
  36. 36.
    Fabian W, Verfahren zur Restmetallabtrennung aus den Ruckstanden von Elektronikstrott-Recycelprozessen (1997), accessed July 2003Google Scholar
  37. 37.
    Hoornweg D, Thomas L (1999) What a waste: solid waste management in Asia. World Bank, Urban Development Sector Unit, Washington, DCGoogle Scholar
  38. 38.
    United Nations (2000) State of the environment in Asia and the Pacific. New YorkGoogle Scholar
  39. 39.
    World Health Organization (2003), accessed July 2003Google Scholar
  40. 40.
    Vest H, Jantsch F (1999). Umwelt-Handbuch: Umweltvertraegliche Batterieentsorgung und verwertung. Deutsche Gesellschaft fur Technische Zusammenarbeit (in German). Eschborn, GermanyGoogle Scholar
  41. 41.
    China Education and Resource Network (2001), accessed July 1, 2003Google Scholar
  42. 42.
    Barron T, Mercury Headworks Analysis for 2000, Palo Alto RWQCP (2001), accessed August 31, 2004Google Scholar
  43. 43.
    Tse P (2002) The mineral industry of North Korea. In: Area reports – International – Asia and the Pacific. US Geological Survey Mineral Yearbook 2001, v III, p 14.1–14.2Google Scholar

Copyright information

© Springer-Verlag Tokyo 2005

Authors and Affiliations

  • Jeremiah Johnson
    • 1
    • 2
  • Marlen Bertram
    • 1
    • 3
  • Kathryn Henderson
    • 1
    • 4
  • Julie Jirikowic
    • 1
  • T. E. Graedel
    • 1
  1. 1.Center for Industrial Ecology, School of Forestry and Environmental StudiesYale UniversityNew HavenUSA
  2. 2.Environmental Engineering ProgramYale UniversityNew HavenUSA
  3. 3.European Aluminium AssociationOEA/EAA Recycling DivisionBrusselsBelgium
  4. 4.Department of Geology and GeophysicsYale UniversityNew HavenUSA

Personalised recommendations