Skip to main content
Log in

Hampshire Sheep as a Large-Animal Model for Cochlear Implantation

  • Original Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Background

Sheep have been proposed as a large-animal model for studying cochlear implantation. However, prior sheep studies report that the facial nerve (FN) obscures the round window membrane (RWM), requiring FN sacrifice or a retrofacial opening to access the middle-ear cavity posterior to the FN for cochlear implantation. We investigated surgical access to the RWM in Hampshire sheep compared to Suffolk-Dorset sheep and the feasibility of Hampshire sheep for cochlear implantation via a facial recess approach.

Methods

Sixteen temporal bones from cadaveric sheep heads (ten Hampshire and six Suffolk-Dorset) were dissected to gain surgical access to the RWM via an extended facial recess approach. RWM visibility was graded using St. Thomas’ Hospital (STH) classification. Cochlear implant (CI) electrode array insertion was performed in two Hampshire specimens. Micro-CT scans were obtained for each temporal bone, with confirmation of appropriate electrode array placement and segmentation of the inner ear structures.

Results

Visibility of the RWM on average was 83% in Hampshire specimens and 59% in Suffolk-Dorset specimens (p = 0.0262). Hampshire RWM visibility was Type I (100% visibility) for three specimens and Type IIa (> 50% visibility) for seven specimens. Suffolk-Dorset RWM visibility was Type IIa for four specimens and Type IIb (< 50% visibility) for two specimens. FN appeared to course more anterolaterally in Suffolk-Dorset specimens. Micro-CT confirmed appropriate CI electrode array placement in the scala tympani without apparent basilar membrane rupture.

Conclusions

Hampshire sheep appear to be a suitable large-animal model for CI electrode insertion via an extended facial recess approach without sacrificing the FN. In this small sample, Hampshire specimens had improved RWM visibility compared to Suffolk-Dorset. Thus, Hampshire sheep may be superior to other breeds for ease of cochlear implantation, with FN and facial recess anatomy more similar to humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Marx M, Girard P, Escude B, Barone P, Fraysse B, Deguine O (2013) Cochlear implantation feasibility in rhesus macaque monkey: anatomic and radiologic results. Otol Neurotol 34(7):e76-81. https://doi.org/10.1097/MAO.0b013e31829411b4

    Article  PubMed  Google Scholar 

  2. Fallon JB, Dueck W, Trang EP, Smyth D, Wise AK (2022) Effects of chronic implantation and long-term stimulation of a cochlear implant in the partial hearing cat model. Hear Res 426:108470. https://doi.org/10.1016/j.heares.2022.108470

    Article  PubMed  Google Scholar 

  3. Lovell JM, Harper GM (2007) The morphology of the inner ear from the domestic pig (Sus scrofa). J Microsc 228(Pt 3):345–357. https://doi.org/10.1111/j.1365-2818.2007.01852.x

    Article  CAS  PubMed  Google Scholar 

  4. Shepherd R, Verhoeven K, Xu J, Risi F, Fallon J, Wise A (2011) An improved cochlear implant electrode array for use in experimental studies. Hear Res 277(1–2):20–27. https://doi.org/10.1016/j.heares.2011.03.017

    Article  PubMed  PubMed Central  Google Scholar 

  5. Yi H, Guo W, Chen W, Chen L, Ye J, Yang S (2016) Miniature pigs: a large animal model of cochlear implantation. Am J Transl Res 8(12):5494–5502

    PubMed  PubMed Central  Google Scholar 

  6. Chen W, Yi H, Zhang L, Ji F, Yuan S, Zhang Y, Ren L, Li J, Chen L, Guo W, Yang S (2017) Establishing the standard method of cochlear implant in Rongchang pig. Acta Otolaryngol 137(5):503–510. https://doi.org/10.1080/00016489.2016.1267406

    Article  PubMed  Google Scholar 

  7. Yildiz E, Gadenstaetter AJ, Gerlitz M, Landegger LD, Liepins R, Nieratschker M, Glueckert R, Staecker H, Honeder C, Arnoldner C (2023) Investigation of inner ear drug delivery with a cochlear catheter in piglets as a representative model for human cochlear pharmacokinetics. Front Pharmacol 14:1062379. https://doi.org/10.3389/fphar.2023.1062379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yildiz E, Gerlitz M, Gadenstaetter AJ, Landegger LD, Nieratschker M, Schum D, Schmied M, Haase A, Kanz F, Kramer AM, Glueckert R, Staecker H, Honeder C, Arnoldner C (2022) Single-incision cochlear implantation and hearing evaluation in piglets and minipigs. Hear Res 426:108644. https://doi.org/10.1016/j.heares.2022.108644

    Article  PubMed  Google Scholar 

  9. Gurr A, Kevenhorster K, Stark T, Pearson M, Dazert S (2010) The common pig: a possible model for teaching ear surgery. Eur Arch Otorhinolaryngol 267(2):213–217. https://doi.org/10.1007/s00405-009-1040-6

    Article  PubMed  Google Scholar 

  10. Anso J, Stahl C, Gerber N, Williamson T, Gavaghan K, Rosler KM, Caversaccio MD, Weber S, Bell B (2014) Feasibility of using EMG for early detection of the facial nerve during robotic direct cochlear access. Otol Neurotol 35(3):545–554. https://doi.org/10.1097/MAO.0000000000000187

    Article  PubMed  Google Scholar 

  11. Wyss Balmer T, Anso J, Muntane E, Gavaghan K, Weber S, Stahel A, Buchler P (2017) In-vivo electrical impedance measurement in mastoid bone. Ann Biomed Eng 45(4):1122–1132. https://doi.org/10.1007/s10439-016-1758-4

    Article  PubMed  Google Scholar 

  12. Feldmann A, Anso J, Bell B, Williamson T, Gavaghan K, Gerber N, Rohrbach H, Weber S, Zysset P (2016) Temperature prediction model for bone drilling based on density distribution and in vivo experiments for minimally invasive robotic cochlear implantation. Ann Biomed Eng 44(5):1576–1586. https://doi.org/10.1007/s10439-015-1450-0

    Article  PubMed  Google Scholar 

  13. Anso J, Balmer TW, Jegge Y, Kalvoy H, Bell BJ, Dur C, Calvo EM, Williamson TM, Gerber N, Ferrario D, Forterre F, Buchler P, Stahel A, Caversaccio MD, Weber S, Gavaghan KA (2019) Electrical impedance to assess facial nerve proximity during robotic cochlear implantation. IEEE Trans Biomed Eng 66(1):237–245. https://doi.org/10.1109/TBME.2018.2830303

    Article  PubMed  Google Scholar 

  14. Henslee AM, Kaufmann CR, Andrick MD, Reineke PT, Tejani VD, Hansen MR (2022) Development and characterization of an electrocochleography-guided robotics-assisted cochlear implant array insertion system. Otolaryngol Head Neck Surg 167(2):334–340. https://doi.org/10.1177/01945998211049210

    Article  PubMed  Google Scholar 

  15. Trinh TT, Cohen C, Boullaud L, Cottier JP, Bakhos D (2021) Sheep as a large animal model for cochlear implantation. Braz J Otorhinolaryngol. https://doi.org/10.1016/j.bjorl.2021.02.014

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kaufmann CR, Tejani VD, Fredericks DC, Henslee AM, Sun DQ, Abbas PJ, Hansen MR (2020) Pilot evaluation of sheep as in vivo model for cochlear implantation. Otol Neurotol 41(5):596–604. https://doi.org/10.1097/MAO.0000000000002587

    Article  PubMed  Google Scholar 

  17. Mantokoudis G, Huth ME, Weisstanner C, Friedrich HM, Nauer C, Candreia C, Caversaccio MD, Senn P (2016) Lamb temporal bone as a surgical training model of round window cochlear implant electrode insertion. Otol Neurotol 37(1):52–56. https://doi.org/10.1097/MAO.0000000000000921

    Article  PubMed  Google Scholar 

  18. Seibel VA, Lavinsky L, De Oliveira JA (2006) Morphometric study of the external and middle ear anatomy in sheep: a possible model for ear experiments. Clin Anat 19(6):503–509. https://doi.org/10.1002/ca.20218

    Article  PubMed  Google Scholar 

  19. Schnabl J, Glueckert R, Feuchtner G, Recheis W, Potrusil T, Kuhn V, Wolf-Magele A, Riechelmann H, Sprinzl GM (2012) Sheep as a large animal model for middle and inner ear implantable hearing devices: a feasibility study in cadavers. Otol Neurotol 33(3):481–489. https://doi.org/10.1097/MAO.0b013e318248ee3a

    Article  PubMed  Google Scholar 

  20. Han S, Suzuki-Kerr H, Suwantika M, Telang RS, Gerneke DA, Anekal PV, Bird P, Vlajkovic SM, Thorne PR (2021) Characterization of the sheep round window membrane. J Assoc Res Otolaryngol 22(1):1–17. https://doi.org/10.1007/s10162-020-00778-9

    Article  PubMed  Google Scholar 

  21. Waring NA, Chern A, Vilarello BJ, Lang JH, Olson ES, Nakajima HH (2023) Sheep as a large-animal model for otology research: temporal bone extraction and transmastoid facial recess approach. J Assoc Res Otolaryngol 24(5):487–497

    Article  PubMed  Google Scholar 

  22. Leong AC, Jiang D, Agger A, Fitzgerald-O’Connor A (2013) Evaluation of round window accessibility to cochlear implant insertion. Eur Arch Otorhinolaryngol 270(4):1237–1242. https://doi.org/10.1007/s00405-012-2106-4

    Article  PubMed  Google Scholar 

  23. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R (2012) 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 30(9):1323–1341. https://doi.org/10.1016/j.mri.2012.05.001

    Article  PubMed  PubMed Central  Google Scholar 

  24. Anschuetz L, Weder S, Mantokoudis G, Kompis M, Caversaccio M, Wimmer W (2018) Cochlear implant insertion depth prediction: a temporal bone accuracy study. Otol Neurotol 39(10):e996–e1001. https://doi.org/10.1097/MAO.0000000000002034

    Article  PubMed  Google Scholar 

  25. Fujiwara RJT, Ishiyama G, Lopez IA, Ishiyama A (2023) Morphometric analysis and linear measurements of the scala tympani and implications in cochlear implant electrodes. Otol Neurotol 44(5):e343–e349. https://doi.org/10.1097/MAO.0000000000003848

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge Jonathan May of May Family Enterprises Inc. for supplying the sheep specimens. We also acknowledge Christopher B. Damoci, Manager of the Oncology Precision Therapeutics and Imaging Core (OPTIC) at Columbia University Medical Center, for his assistance with the micro-CT scans. We also acknowledge MED-EL for loaning us the Flex24 electrode arrays.

Funding

This work was supported by funding from the National Institute on Deafness and Other Communication Disorders (NIDCD) R01 DC016874. The Columbia University Medical Center Cancer Center Support Grant (CCSG), NIH grant #P30 CA013696 (National Cancer Institute), partially funds this shared resource.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth S. Olson.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 295 KB)

Supplementary file2 (MOV 21940 KB)

Supplementary file3 (MOV 55832 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waring, N.A., Chern, A., Vilarello, B.J. et al. Hampshire Sheep as a Large-Animal Model for Cochlear Implantation. JARO (2024). https://doi.org/10.1007/s10162-024-00946-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10162-024-00946-1

Keywords

Navigation