Skip to main content
Log in

Mechanical Effects of Medical Device Attachment to Human Tympanic Membrane

  • Original Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Purpose

Several treatment methods for hearing disorders rely on attaching medical devices to the tympanic membrane. This study aims to systematically analyze the effects of the material and geometrical properties and location of the medical devices attached to the tympanic membrane on middle-ear vibrations.

Methods

A finite-element model of the human middle ear was employed to simulate the effects of attachment of medical devices. Various types of material and geometrical properties, locations, and modeling scenarios were investigated for the medical device.

Results

The attachment of the device magnifies the effects of anti-resonances of the middle ear. Additionally, the variations of the material properties of the device significantly alter the middle-ear resonance frequency while changes in the umbo and stapes footplate motions are negligible at frequencies above 5 kHz. Furthermore, modeling the device as a point mass cannot accurately represent the implanted middle-ear behavior. The variations of the diameter and height of the medical device have negligible effects on the middle-ear vibrations at frequencies below 200 Hz but can have considerable impacts at higher frequencies. The effects of changing the device height were negligible at frequencies above 2 kHz. We also discuss the effects of medical device attachment on the vibration patterns of the tympanic membrane as well as the impacts of the variations of the location of the device on the stapes footplate responses.

Conclusion

The findings of our study aid the development and optimization of new therapeutic devices, attached to the tympanic membrane, to have the least adverse effects on middle-ear vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

Data are available upon reasonable request from the corresponding author.

Notes

  1. The coefficient of variation is defined as the percentage of the standard deviation divided by the mean.

References

  1. Cofer S, Meyer A, Yoon D, Beebe D, Castro C, Rimell F, Belani K (2017) Tympanostomy tube placement in children using a single-pass tool with moderate sedation. Otolaryngol Neck Surg 157:533–535. https://doi.org/10.1177/0194599817707178

    Article  Google Scholar 

  2. Rosenfeld RM (2020) Tympanostomy tube controversies and issues: state-of-the-art review. Ear Nose Throat J 99:15S-21S. https://doi.org/10.1177/0145561320919656

    Article  PubMed  Google Scholar 

  3. Perkins R (1996) Earlens tympanic contact transducer: a new method of sound transduction to the human ear. Otolaryngol Head Neck Surg 114:720–728. https://doi.org/10.1016/S0194-5998(96)70092-X

    Article  CAS  PubMed  Google Scholar 

  4. Song Y-L, Jian J-T, Chen W-Z, Shih C-H, Chou Y-F, Liu T-C, Lee C-F (2013) The development of a non-surgical direct drive hearing device with a wireless actuator coupled to the tympanic membrane. Appl Acoust 74:1511–1518. https://doi.org/10.1016/j.apacoust.2013.06.014

    Article  Google Scholar 

  5. Liu H, Ge S, Cheng G, Yang J, Rao Z, Huang X (2014) Transducer type and design influence on the hearing loss compensation behaviour of the electromagnetic middle ear implant in a finite element analysis. Adv Mech Eng 6:867108. https://doi.org/10.1155/2014/867108

    Article  Google Scholar 

  6. Hamanishi S, Koike T, Matsuki H, Wada H (2004) A new electromagnetic hearing aid using lightweight coils to vibrate the ossicles. IEEE Trans Magn 40:3387–3393. https://doi.org/10.1109/TMAG.2004.834190

    Article  Google Scholar 

  7. Hong E-P, Kim M-K, Park I-Y, Lee S -h, Roh Y, Cho J-H (2007) Vibration modeling and design of piezoelectric floating mass transducer for implantable middle ear hearing devices. IEICE Trans Fundam Electron Commun Comput Sci E90-A:1620–1627. https://doi.org/10.1093/ietfec/e90-a.8.1620

    Article  Google Scholar 

  8. Pegan A et al (2019) Active middle ear Vibrant Soundbridge sound implant. Acta Clin Croat 58(2). https://doi.org/10.20471/acc.2019.58.02.20

  9. Maftoon N, Funnell WRJ, Daniel SJ, Decraemer WF (2015) Finite-element modelling of the response of the gerbil middle ear to sound. J Assoc Res Otolaryngol 16:547–567. https://doi.org/10.1007/s10162-015-0531-y

    Article  PubMed  PubMed Central  Google Scholar 

  10. Frear DL, Guan X, Stieger C, Rosowski JJ, Nakajima HH (2018) Impedances of the inner and middle ear estimated from intracochlear sound pressures in normal human temporal bones. Hear Res 367:17–31

    Article  PubMed  PubMed Central  Google Scholar 

  11. Xue L, Liu H, Wang W, Yang J, Zhao Y, Huang X (2020) The role of third windows on human sound transmission of forward and reverse stimulations: a lumped-parameter approach. J Acoust Soc Am 147:1478–1490

    Article  PubMed  Google Scholar 

  12. Bernhard H, Stieger C, Perriard Y (2010) Design of a semi-implantable hearing device for direct acoustic cochlear stimulation. IEEE Trans Biomed Eng 58:420–428

    Article  PubMed  Google Scholar 

  13. Zhao F, Koike T, Wang J, Sienz H, Meredith R (2009) Finite element analysis of the middle ear transfer functions and related pathologies. Med Eng Phys 31:907–916. https://doi.org/10.1016/j.medengphy.2009.06.009

    Article  PubMed  Google Scholar 

  14. Funnell WR, Laszlo CA (1978) Modeling of the cat eardrum as a thin shell using the finite-element method. J Acoust Soc Am 63:1461–1467. https://doi.org/10.1121/1.381892

    Article  CAS  PubMed  Google Scholar 

  15. De Greef D, Aernouts J, Aerts J, Cheng JT, Horwitz R, Rosowski JJ, Dirckx JJJ (2014) Viscoelastic properties of the human tympanic membrane studied with stroboscopic holography and finite element modeling. Hear Res 312:69–80. https://doi.org/10.1016/j.heares.2014.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  16. Gan RZ, Cheng T, Dai C, Yang F, Wood MW (2009) Finite element modeling of sound transmission with perforations of tympanic membrane. J Acoust Soc Am 126:243–253. https://doi.org/10.1121/1.3129129

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ebrahimian A, Mohammadi H, Rosowski JJ, Cheng JT, Maftoon N (2023) Inaccuracies of deterministic finite-element models of human middle ear revealed by stochastic modelling. Sci Rep 13. https://doi.org/10.1038/s41598-023-34018-w

  18. Ebrahimian A, Maftoon N (2021) Stochastic finite element modelling of human middle-ear. CMBES Proceedings 44

  19. Gan RZ, Dai C, Wang X, Nakmali D, Wood MW (2010) A totally implantable hearing system – design and function characterization in 3D computational model and temporal bones. Hear Res 263:138–144. https://doi.org/10.1016/j.heares.2009.09.003

    Article  PubMed  Google Scholar 

  20. Wang X, Hu Y, Wang Z, Shi H (2011) Finite element analysis of the coupling between ossicular chain and mass loading for evaluation of implantable hearing device. Hear Res 280:48–57. https://doi.org/10.1016/j.heares.2011.04.012

    Article  PubMed  Google Scholar 

  21. Zhang X, Gan RZ (2011) A comprehensive model of human ear for analysis of implantable hearing devices. IEEE Trans Biomed Eng 58:3024–3027. https://doi.org/10.1109/TBME.2011.2159714

    Article  PubMed  Google Scholar 

  22. Nishihara S, Aritomo H, Goode RL (1993) Effect of changes in mass on middle ear function. Otolaryngol Neck Surg 109:899–910. https://doi.org/10.1177/019459989310900520

    Article  CAS  Google Scholar 

  23. Ebrahimian A, Mohammadi H, Maftoon N (2023) Relative importance and interactions of parameters of finite-element models of human middle ear. J Acoust Soc Am 154:619–634. https://doi.org/10.1121/10.0020273

    Article  PubMed  Google Scholar 

  24. Vlaming MSMG, Feenstra L (1986) Studies on the mechanics of the normal human middle ear. 11(5):11

    Google Scholar 

  25. Voss SE, Rosowski JJ, Merchant SN, Peake WT (2000) Acoustic responses of the human middle ear. Hear Res 150:43–69. https://doi.org/10.1016/S0378-5955(00)00177-5

    Article  CAS  PubMed  Google Scholar 

  26. Nicolas G, Fouquet T (2013) Adaptive mesh refinement for conformal hexahedralmeshes. Finite Elem Anal Des 67:1–12. https://doi.org/10.1016/j.finel.2012.11.008

    Article  Google Scholar 

  27. Victor A, Ribeiro J, Araújo FS (2019) Study of PDMS characterization and its applications in biomedicine: a review. J Mech Eng Biomech 4:1–9. https://doi.org/10.24243/JMEB/4.1.163

  28. Sandra H, Kay DJ (2016) Tympanostomy tube selection: a review of the evidence. Int J Head Neck Surg 7:17–22. https://doi.org/10.5005/jp-journals-10001-1259

    Article  Google Scholar 

  29. Armani D, Liu C, Aluru N (1999) Re-configurable fluid circuits by PDMS elastomer micromachining. In: Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291). IEEE, Orlando, FL, USA, pp 222–227

  30. Bi Z, Mueller DW (2019) Friction predication on pin-to-plate interface of PTFE material and steel. Friction 7:268–281. https://doi.org/10.1007/s40544-018-0224-8

    Article  CAS  Google Scholar 

  31. Ruchti CB, Niemeyer L (1986) Ablation controlled arcs. IEEE Trans Plasma Sci 14:423–434. https://doi.org/10.1109/TPS.1986.4316570

    Article  Google Scholar 

  32. Trochimczuk R (2017) Analysis of parallelogram mechanism used to preserve remote center of motion for surgical telemanipulator. Int J Appl Mech Eng 22:229–240. https://doi.org/10.1515/ijame-2017-0013

    Article  Google Scholar 

  33. Goode RL, Killion M, Nakamura K, Nishihara S (1994) New knowledge about the function of the human middle ear: development of an improved analog model. Am J Otol 15:145–154

    CAS  PubMed  Google Scholar 

  34. O’Connor KN, Cai H, Puria S (2017) The effects of varying tympanic-membrane material properties on human middle-ear sound transmission in a three-dimensional finite-element model. J Acoust Soc Am 142:2836–2853. https://doi.org/10.1121/1.5008741

    Article  PubMed  PubMed Central  Google Scholar 

  35. Gan RZ, Reeves BP, Wang X (2007) Modeling of sound transmission from ear canal to cochlea. Ann Biomed Eng 35:2180–2195. https://doi.org/10.1007/s10439-007-9366-y

    Article  PubMed  Google Scholar 

  36. Gan RZ, Sun Q, Feng B, Wood MW (2006) Acoustic–structural coupled finite element analysis for sound transmission in human ear—pressure distributions. Med Eng Phys 28:395–404. https://doi.org/10.1016/j.medengphy.2005.07.018

    Article  PubMed  Google Scholar 

  37. Zemplenyi J, Gilman S, Dirks D (1985) Optical method for measurement of ear canal length. J Acoust Soc Am 78:2146–2148. https://doi.org/10.1121/1.392676

    Article  CAS  PubMed  Google Scholar 

  38. Kivekäs I, Poe D (2015) Is there an optimal location for tympanostomy tube placement? Laryngoscope 125:1513–1514. https://doi.org/10.1002/lary.25127

    Article  PubMed  Google Scholar 

  39. Ebrahimian A, Tang H, Furlong C, Cheng JT, Maftoon N (2021) Material characterization of thin planar structures using full-field harmonic vibration response measured with stroboscopic holography. Int J Mech Sci 198:106390. https://doi.org/10.1016/j.ijmecsci.2021.106390

    Article  PubMed  PubMed Central  Google Scholar 

  40. Cheng JT, Maftoon N, Guignard J, Ravicz ME, Rosowski J (2019) Tympanic membrane surface motions in forward and reverse middle ear transmissions. J Acoust Soc Am 145:272–291. https://doi.org/10.1121/1.5087134

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

FE simulations were performed using the infrastructures of Digital Research Alliance of Canada (www.alliancecan.ca ).

Funding

This work was supported by the Canada Foundation for Innovation and the Ontario Research Fund - Research Innovation (38964) and the Natural Sciences and Engineering Research Council of Canada (RGPIN-2020-05522).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Maftoon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2229 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimian, A., Mohammadi, H. & Maftoon, N. Mechanical Effects of Medical Device Attachment to Human Tympanic Membrane. JARO (2024). https://doi.org/10.1007/s10162-024-00942-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10162-024-00942-5

Keywords

Navigation