Skip to main content

Sheep as a Large-Animal Model for Otology Research: Temporal Bone Extraction and Transmastoid Facial Recess Surgical Approach



Sheep are used as a large-animal model for otology research and can be used to study implantable hearing devices. However, a method for temporal bone extraction in sheep, which enables various experiments, has not been described, and literature on middle ear access is limited. We describe a method for temporal bone extraction and an extended facial recess surgical approach to the middle ear in sheep.


Ten temporal bones from five Hampshire sheep head cadavers were extracted using an oscillating saw. After craniotomy and removal of the brain, a coronal cut was made at the posterior aspect of the orbit followed by a midsagittal cut of the occipital bone and disarticulation of the atlanto-occipital joint. Temporal bones were surgically prepared with an extended facial recess approach. Micro-CT scans of each temporal bone were obtained, and anatomic dimensions were measured.


Temporal bone extraction was successful in 10/10 temporal bones. Extended facial recess approach exposed the malleus, incus, stapes, and round window while preserving the facial nerve, with the following surgical considerations: minimally pneumatized mastoid; tegmen (superior limit of mastoid cavity) is low-lying and sits below temporal artery; chorda tympani sacrificed to optimize middle ear exposure; incus buttress does not obscure view of middle ear. Distance between the superior aspect of external auditory canal and tegmen was 2.7 (SD 0.9) mm.


We identified anatomic landmarks for temporal bone extraction and describe an extended facial recess approach in sheep that exposes the ossicles and round window. This approach is feasible for studying implantable hearing devices.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Data Availability

Micro-CT scan files are available upon request.


  1. Gurr A, Pearson MD, Dazert S (2011) Lambs’ temporal bone anatomy under didactic aspects. Braz J Otorhinolaryngol 77(1):51–57.

    Article  PubMed  Google Scholar 

  2. Soares HB, Lavinsky L (2011) Histology of sheep temporal bone. Braz J Otorhinolaryngol 77(3):285–292.

    Article  PubMed  Google Scholar 

  3. Seibel VA, Lavinsky L, De Oliveira JA (2006) Morphometric study of the external and middle ear anatomy in sheep: a possible model for ear experiments. Clin Anat 19(6):503–509.

    Article  PubMed  Google Scholar 

  4. Seibel VA, Lavinsky L, Irion K (2006) CT-Scan sheep and human inner ear morphometric comparison. Braz J Otorhinolaryngol 72(3):370–376.

    Article  PubMed  Google Scholar 

  5. Schnabl J, Glueckert R, Feuchtner G, Recheis W, Potrusil T, Kuhn V, Wolf-Magele A, Riechelmann H, Sprinzl GM (2012) Sheep as a large animal model for middle and inner ear implantable hearing devices: a feasibility study in cadavers. Otol Neurotol 33(3):481–489.

    Article  PubMed  Google Scholar 

  6. Han S, Suzuki-Kerr H, Suwantika M, Telang RS, Gerneke DA, Anekal PV, Bird P, Vlajkovic SM, Thorne PR (2021) Characterization of the sheep round window membrane. J Assoc Res Otolaryngol 22(1):1–17.

    Article  PubMed  Google Scholar 

  7. Kerneis S, Escoffre J-M, Galvin JJ, Bouakaz A, Presset A, Alix C, Oujagir E, Lefèvre A, Emond P, Blasco H, Bakhos D (2023) Sonoporation of the round window membrane on a sheep model: a safety study. Pharmaceutics 15(2).

  8. Ames DR, Arehart LA (1972) Physiological response of lambs to auditory stimuli. J Anim Sci 34(6):994–998.

    Article  CAS  PubMed  Google Scholar 

  9. Peus D, Dobrev I, Prochazka L, Thoele K, Dalbert A, Boss A, Newcomb N, Probst R, Roosli C, Sim JH, Huber A, Pfiffner F (2017) Sheep as a large animal ear model: middle-ear ossicular velocities and intracochlear sound pressure. Hear Res 351:88–97.

    Article  PubMed  Google Scholar 

  10. Peus D, Dobrev I, Pfiffner F, Sim JH (2020) Comparison of sheep and human middle-ear ossicles: anatomy and inertial properties. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 206(5):683–700.

    Article  PubMed  PubMed Central  Google Scholar 

  11. McFadden D, Pasanen EG, Valero MD, Roberts EK, Lee TM (2008) Dissociation between distortion-product and click-evoked otoacoustic emissions in sheep (Ovis aries). J Acoust Soc Am 124(6):3730–3738.

    Article  PubMed  PubMed Central  Google Scholar 

  12. McFadden D, Pasanen EG, Valero MD, Roberts EK, Lee TM (2009) Effect of prenatal androgens on click-evoked otoacoustic emissions in male and female sheep (Ovis aries). Horm Behav 55(1):98–105.

    Article  CAS  PubMed  Google Scholar 

  13. Maia FC, Lavinsky L, Mollerke RO, Duarte ME, Pereira DP, Maia JE (2008) Distortion product otoacoustic emissions in sheep before and after hyperinsulinemia induction. Braz J Otorhinolaryngol 74(2):181–187.

    Article  PubMed  Google Scholar 

  14. Zuma e Maia FC, Lavinsky L (2006) Distortion product otoacoustic emissions in an animal model of induced hyperinsulinemia. Int Tinnitus J 12(2):133–9

  15. Angeli RD, Lavinsky L, Dolganov A (2009) Alterations in cochlear function during induced acute hyperinsulinemia in an animal model. Braz J Otorhinolaryngol 75(5):760–764.

    Article  PubMed  Google Scholar 

  16. Boullaud L, Blasco H, Caillaud E, Emond P, Bakhos D (2022) Immediate-early modifications to the metabolomic profile of the perilymph following an acoustic trauma in a sheep model. J Clin Med 11(16).

  17. Pohl F, Paasche G, Lenarz T, Schuon R (2017) Tympanometric measurements in conscious sheep - a diagnostic tool for pre-clinical middle ear implant studies. Int J Audiol 56(1):53–61.

    Article  PubMed  Google Scholar 

  18. Gocer C, Eryilmaz A, Genc U, Dagli M, Karabulut H, Iriz A (2007) An alternative model for stapedectomy training in residency program: sheep cadaver ear. Eur Arch Otorhinolaryngol 264(12):1409–1412.

    Article  PubMed  Google Scholar 

  19. Cordero A, del mar Medina M, Alonso A, Labatut T (2011) Stapedectomy in sheep: an animal model for surgical training. Otol Neurotol 32(5):742–7.

  20. Cordero A, Benitez S, Reyes P, Vaca M, Polo R, Perez C, Alonso A, Cobeta I (2015) Ovine ear model for fully endoscopic stapedectomy training. Eur Arch Otorhinolaryngol 272(9):2167–2174.

    Article  CAS  PubMed  Google Scholar 

  21. Anschuetz L, Bonali M, Ghirelli M, Mattioli F, Villari D, Caversaccio M, Presutti L (2017) An ovine model for exclusive endoscopic ear surgery. JAMA Otolaryngol Head Neck Surg 143(3):247–252.

    Article  PubMed  Google Scholar 

  22. Beckmann S, Yacoub A, Fernandez IJ, Niederhauser L, Fermi M, Caversaccio M, Bonali M, Anschuetz L (2021) Exclusive endoscopic laser-stapedotomy: feasibility of an ovine training model. Otol Neurotol 42(7):994–1000.

    Article  PubMed  Google Scholar 

  23. Shrivastava T, Khan MM, Parab SR (2022) Learning Curve of Two Handed Endoscopic Ear Surgery on Sheep Temporal Bone: A Fellow’s Perspective. Indian J Otolaryngol Head Neck Surg 74(Suppl 1):550–558.

    Article  PubMed  Google Scholar 

  24. Okhovat S, Milner TD, Iyer A (2019) Feasibility of ovine and synthetic temporal bone models for simulation training in endoscopic ear surgery. J Laryngol Otol 133(11):966–973.

    Article  CAS  PubMed  Google Scholar 

  25. Mantokoudis G, Huth ME, Weisstanner C, Friedrich HM, Nauer C, Candreia C, Caversaccio MD, Senn P (2016) Lamb temporal bone as a surgical training model of round window cochlear implant electrode insertion. Otol Neurotol 37(1):52–56.

    Article  PubMed  Google Scholar 

  26. Trinh TT, Cohen C, Boullaud L, Cottier JP, Bakhos D (2021) Sheep as a large animal model for cochlear implantation. Braz J Otorhinolaryngol.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Weisstanner C, Mantokoudis G, Huth M, Verma RK, Nauer C, Senn P, Caversaccio MD, Wagner F (2015) Radiation dose reduction in postoperative computed position control of cochlear implant electrodes in lambs - an experimental study. Int J Pediatr Otorhinolaryngol 79(12):2348–2354.

    Article  CAS  PubMed  Google Scholar 

  28. Lavinsky L, Goycoolea M, Gananca MM, Zwetsch Y (1999) Surgical treatment of vertigo by utriculostomy: an experimental study in sheep. Acta Otolaryngol 119(5):522–527.

    Article  CAS  PubMed  Google Scholar 

  29. Neudert M, Beleites T, Ney M, Kluge A, Lasurashvili N, Bornitz M, Scharnweber D, Zahnert T (2010) Osseointegration of titanium prostheses on the stapes footplate. J Assoc Res Otolaryngol 11(2):161–171.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Piu F, Wang X, Fernandez R, Dellamary L, Harrop A, Ye Q, Sweet J, Tapp R, Dolan DF, Altschuler RA, Lichter J, LeBel C (2011) OTO-104: a sustained-release dexamethasone hydrogel for the treatment of otic disorders. Otol Neurotol 32(1):171–179.

    Article  PubMed  Google Scholar 

  31. Wang X, Fernandez R, Dellamary L, Harrop A, Ye Q, Lichter J, Lau D, Lebel C, Piu F (2011) Pharmacokinetics of dexamethasone solution following intratympanic injection in guinea pig and sheep. Audiol Neurootol 16(4):233–241.

    Article  CAS  PubMed  Google Scholar 

  32. Larsson A, Andersson M, Wigren S, Pivodic A, Flynn M, Nannmark U (2015) Soft tissue integration of hydroxyapatite-coated abutments for bone conduction implants. Clin Implant Dent Relat Res 17(Suppl 2):e730–e735.

    Article  PubMed  Google Scholar 

  33. Larsson A, Wigren S, Andersson M, Ekeroth G, Flynn M, Nannmark U (2012) Histologic evaluation of soft tissue integration of experimental abutments for bone anchored hearing implants using surgery without soft tissue reduction. Otol Neurotol 33(8):1445–1451.

    Article  PubMed  Google Scholar 

  34. Taghavi H, Hakansson B, Eeg-Olofsson M, Johansson CB, Tjellstrom A, Reinfeldt S, Bergqvist T, Olsson J (2013) A vibration investigation of a flat surface contact to skull bone for direct bone conduction transmission in sheep skulls in vivo. Otol Neurotol 34(4):690–698.

    Article  PubMed  Google Scholar 

  35. Kaufmann CR, Tejani VD, Fredericks DC, Henslee AM, Sun DQ, Abbas PJ, Hansen MR (2020) Pilot evaluation of sheep as in vivo model for cochlear implantation. Otol Neurotol 41(5):596–604.

    Article  PubMed  Google Scholar 

  36. Anso J, Stahl C, Gerber N, Williamson T, Gavaghan K, Rosler KM, Caversaccio MD, Weber S, Bell B (2014) Feasibility of using EMG for early detection of the facial nerve during robotic direct cochlear access. Otol Neurotol 35(3):545–554.

    Article  PubMed  Google Scholar 

  37. Wyss Balmer T, Anso J, Muntane E, Gavaghan K, Weber S, Stahel A, Buchler P (2017) In-vivo electrical impedance measurement in mastoid bone. Ann Biomed Eng 45(4):1122–1132.

    Article  PubMed  Google Scholar 

  38. Feldmann A, Anso J, Bell B, Williamson T, Gavaghan K, Gerber N, Rohrbach H, Weber S, Zysset P (2016) Temperature prediction model for bone drilling based on density distribution and in vivo experiments for minimally invasive robotic cochlear implantation. Ann Biomed Eng 44(5):1576–1586.

    Article  PubMed  Google Scholar 

  39. Anso J, Balmer TW, Jegge Y, Kalvoy H, Bell BJ, Dur C, Calvo EM, Williamson TM, Gerber N, Ferrario D, Forterre F, Buchler P, Stahel A, Caversaccio MD, Weber S, Gavaghan KA (2019) Electrical impedance to assess facial nerve proximity during robotic cochlear implantation. IEEE Trans Biomed Eng 66(1):237–245.

    Article  PubMed  Google Scholar 

  40. Henslee AM, Kaufmann CR, Andrick MD, Reineke PT, Tejani VD, Hansen MR (2022) Development and characterization of an electrocochleography-guided robotics-assisted cochlear implant array insertion system. Otolaryngol Head Neck Surg 167(2):334–340.

    Article  PubMed  Google Scholar 

  41. Djinovic Z, Pavelka R, Tomic M, Sprinzl G, Plenk H, Losert U, Bergmeister H, Plasenzotti R (2018) In-vitro and in-vivo measurement of the animal’s middle ear acoustical response by partially implantable fiber-optic sensing system. Biosens Bioelectron 103:176–181.

    Article  CAS  PubMed  Google Scholar 

  42. Pfiffner F, Prochazka L, Dobrev I, Klein K, Sulser P, Péus D, Sim JH, Dalbert A, Röösli C, Obrist D, Huber A (2018) Proof of concept for an intracochlear acoustic receiver for use in acute large animal experiments. Sensors (Basel) 18(10).

  43. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, Bauer C, Jennings D, Fennessy F, Sonka M, Buatti J, Aylward S, Miller JV, Pieper S, Kikinis R (2012) 3D Slicer as an image computing platform for the Quantitative Imaging Network. Magn Reson Imaging 30(9):1323–1341.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Dinh C, Szczupak M, Moon S, Angeli S, Eshraghi A, Telischi FF (2015) Human temporal bone removal: the skull base block method. J Neurol Surg B Skull Base 76(4):278–280.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Makki FM, Amoodi HA, van Wijhe RG, Bance M (2011) Anatomic analysis of the mastoid tegmen: slopes and tegmen shape variances. Otol Neurotol 32(4):581–588.

    Article  PubMed  Google Scholar 

  46. Yildiz E, Gerlitz M, Gadenstaetter AJ, Landegger LD, Nieratschker M, Schum D, Schmied M, Haase A, Kanz F, Kramer AM, Glueckert R, Staecker H, Honeder C, Arnoldner C (2022) Single-incision cochlear implantation and hearing evaluation in piglets and minipigs. Hear Res 426:108644.

  47. Fermi M, Chiari F, Mattioli F, Bonali M, Molinari G, Alicandri-Ciufelli M, Anschuetz L, Fernandez IJ, Presutti L (2022) Surgical training on ex vivo ovine model in otolaryngology head and neck surgery: a comprehensive review. Int J Environ Res Public Health 19(6).

Download references


We acknowledge Jonathan May of May Family Enterprises Inc. for supplying the sheep specimens. We also acknowledge Christopher B. Damoci, Manager of the Oncology Precision Therapeutics and Imaging Core (OPTIC) at Columbia University Medical Center, for his assistance with the micro-CT scans. The Columbia University Medical Center Cancer Center Support Grant (CCSG), NIH grant #P30 CA013696 (National Cancer Institute) partially funds this shared resource. We also acknowledge Yew Song Cheng, MD, for his comments and suggestions on the paper.


This work was supported by funding from the National Institute on Deafness and Other Communication Disorders (NIDCD) R01 DC016874.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Elizabeth S. Olson.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1. Video scrolling through the axial CT scan of presurgical specimen 3R from inferior to superior. (MOV 82236 KB)

Supplementary file2. Video scrolling through the coronal CT scan of presurgical specimen 3R from posterior to anterior. (MOV 92701 KB)

Supplementary file3. Video scrolling through the sagittal CT scan of presurgical specimen 3R from right (lateral) to left (medial). (MOV 105851 KB)

Supplementary file4. Video scrolling through the axial CT scan of postsurgical specimen 3R from inferior to superior. (MOV 75986 KB)

Supplementary file5. Video scrolling through the coronal CT scan of postsurgical specimen 3R from posterior to anterior. (MOV 91274 KB)

Supplementary file6. Video scrolling through the sagittal CT scan of postsurgical specimen 3R from right (lateral) to left (medial). (MOV 67198 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waring, N.A., Chern, A., Vilarello, B.J. et al. Sheep as a Large-Animal Model for Otology Research: Temporal Bone Extraction and Transmastoid Facial Recess Surgical Approach. JARO (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: