Skip to main content
Log in

Connexin36 RNA Expression in the Cochlear Nucleus of the Echolocating Bat, Eptesicus fuscus

  • Original Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Purpose

The echolocating bat is used as a model for studying the auditory nervous system because its specialized sensory capabilities arise from general mammalian auditory percepts such as pitch and sound source localization. These percepts are mediated by precise timing within neurons and networks of the lower auditory brainstem, where the gap junction protein Connexin36 (CX36) is expressed. Gap junctions and electrical synapses in the central nervous system are associated with fast transmission and synchronous patterns of firing within neuronal networks. The purpose of this study was to identify areas where CX36 was expressed in the bat cochlear nucleus to shed light on auditory brainstem networks in a hearing specialist animal model.

Methods

We investigated the distribution of CX36 RNA throughout the cochlear nucleus complex of the echolocating big brown bat, Eptesicus fuscus, using in situ hybridization. As a qualitative comparison, we visualized Gjd2 gene expression in the cochlear nucleus of transgenic CX36 reporter mice, species that hear ultrasound but do not echolocate.

Results

In both the bat and the mouse, CX36 is expressed in the anteroventral and in the dorsal cochlear nucleus, with more limited expression in the posteroventral cochlear nucleus. These results are generally consistent with previous work based on immunohistochemistry.

Conclusion

Our data suggest that the anatomical substrate for CX36-mediated electrical neurotransmission is conserved in the mammalian CN across echolocating bats and non-echolocating mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data are available within the article. Additional information will be provided upon request to the corresponding author.

References

  1. Bennett MV, Zukin RS (2004) Electrical coupling and neuronal synchronization in the mammalian brain. Neuron 41(4):495–511. https://doi.org/10.1016/S0896-6273(04)00043-1

    Article  CAS  PubMed  Google Scholar 

  2. Connors BW (2017) Synchrony and so much more: diverse roles for electrical synapses in neural circuits. Dev Neurobiol 77(5):610–624. https://doi.org/10.1002/dneu.22493

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pereda AE (2014) Electrical synapses and their functional interactions with chemical synapses. Nat Rev Neurosci 15(4):250–263. https://doi.org/10.1038/nrn3708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Galarreta M, Hestrin S (2001) Spike transmission and synchrony detection in networks of GABAergic interneurons. Science 292(5525):2295–2299. https://doi.org/10.1126/science.1061395

    Article  CAS  PubMed  Google Scholar 

  5. Joris PX, Smith PH, Yin TC (1998) Coincidence detection in the auditory system: 50 years after Jeffress. Neuron 21(6):1235–1238. https://doi.org/10.1016/S0896-6273(00)80643-1

    Article  CAS  PubMed  Google Scholar 

  6. Licklider JCR (1959) Three auditory theories. In: Koch S (ed) Psychology: a study of a science. McGraw-Hill, New York, pp 41–144

    Google Scholar 

  7. Simmons JA, Simmons AM (2011) Bats and frogs and animals in between: evidence for a common central timing mechanism to extract periodicity pitch. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 197(5):585–594. https://doi.org/10.1007/s00359-010-0607-4

    Article  PubMed  Google Scholar 

  8. Lyon RF (2017) Human and machine hearing. Cambridge University Press, Cambridge UK

    Book  Google Scholar 

  9. Ming C, Haro S, Simmons AM, Simmons JA (2021) A comprehensive computational model of animal biosonar signal processing. PLoS Comput Biol 17(2):e1008677. https://doi.org/10.1371/journal.pcbi.1008677

  10. Rash JE, Staines WA, Yasumura T, Patel D, Furman CS, Stelmack GL, Nagy JI (2000) Immunogold evidence that neuronal gap junctions in adult rat brain and spinal cord contain connexin-36 but not connexin-32 or connexin-43. Proc Natl Acad Sci USA 97(13):7573–7578. https://doi.org/10.1073/pnas.97.13.7573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rubio ME, Nagy JI (2015) Connexin36 expression in major centers of the auditory system in the CNS of mouse and rat: evidence for neurons forming purely electrical synapses and morphologically mixed synapses. Neurosci 303:604–629. https://doi.org/10.1016/j.neuroscience.2015.07.026

    Article  CAS  Google Scholar 

  12. Belluardo N, Mudo G, Trovato-Salinaro A, Le Gurun S, Charollais A, Serre-Beinier V, Amato G, Haefliger JA, Meda P, Condorelli DF (2000) Expression of connexin36 in the adult and developing rat brain. Brain Res 865(1):121–138. https://doi.org/10.1016/S0006-8993(00)02300-3

    Article  CAS  PubMed  Google Scholar 

  13. Condorelli DF, Parenti R, Spinella F, Trovato Salinaro A, Belluardo N, Cardile V, Cicirata F (1998) Cloning of a new gap junction gene (Cx36) highly expressed in mammalian brain neurons. Eur J Neurosci 10(3):1202–1208. https://doi.org/10.1046/j.1460-9568.1998.00163.x

    Article  CAS  PubMed  Google Scholar 

  14. Gómez-Nieto R, Rubio ME (2009) A bushy cell network in the rat ventral cochlear nucleus. J Comp Neurol 516(4):241–263. https://doi.org/10.1002/cne.22139

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mugnaini E (1985) GABA neurons in the superficial layers of the rat dorsal cochlear nucleus: light and electron microscopic immunocytochemistry. J Comp Neurol 235(1):61–81. https://doi.org/10.1002/cne.902350106

    Article  CAS  PubMed  Google Scholar 

  16. Sotelo CT, Gentschev T, Zamora AJ (1976) Gap junctions in ventral cochlear nucleus of the rat. A possible new example of electrotonic junctions in the mammalian C.N.S. Neurosci 1(1):5–7. https://doi.org/10.1016/0306-4522(76)90041-5

  17. Wouterlood FG, Mugnaini E, Osen KK, Dahl AL (1984) Stellate neurons in rat dorsal cochlear nucleus studies with combined Golgi impregnation and electron microscopy: synaptic connections and mutual coupling by gap junctions. J Neurocytol 13(4):639–664. https://doi.org/10.1007/BF01148083

    Article  CAS  PubMed  Google Scholar 

  18. Gómez-Nieto R, Rubio ME (2011) Ultrastructure, synaptic organization, and molecular components of bushy cell networks in the anteroventral cochlear nucleus of the rhesus monkey. Neurosci 179:188–207. https://doi.org/10.1016/j.neuroscience.2011.01.058

    Article  CAS  Google Scholar 

  19. Apostolides PF, Trussell LO (2013) Regulation of interneuron excitability by gap junction coupling with principal cells. Nat Neurosci 16(12):1764–1772. https://doi.org/10.1038/nn.3569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Apostolides PF, Trussell LO (2014a) Control of interneuron firing by subthreshold synaptic potentials in principal cells of the dorsal cochlear nucleus. Neuron 83(2):324–330. https://doi.org/10.1016/j.neuron.2014.06.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Apostolides PF, Trussell LO (2014b) Superficial stellate cells of the dorsal cochlear nucleus. Front Neural Circuits 8:63. https://doi.org/10.3389/fncir.2014.00063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yaeger DB, Trussell LO (2016) Auditory Golgi cells are interconnected predominantly by electrical synapses. J Neurophysiol 116(2):540–551. https://doi.org/10.1152/jn.01108.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cant NB (1992) The cochlear nucleus: neuronal types and their synaptic organization. In: DB Webster, AN Popper, RR Fay (eds), The Mammalian Auditory Pathway: Neuroanatomy. Springer Handbook of Auditory Research, vol 1. Springer, New York, pp 66–116. https://doi.org/10.1007/978-1-4612-4416-5_3

  24. Rubio ME (2018) Microcircuits of the ventral cochlear nucleus. In: DL Oliver, NB Cant, RR Fay, AN Popper (eds), The mammalian auditory pathways: synaptic organization and microcircuits. Springer Handbook of Auditory Research, vol 65. Springer, Cham, pp 41–71. https://doi.org/10.1007/978-3-319-71798-2_3

  25. Trussell LO, Oertel D (2018) Microcircuits of the dorsal cochlear nucleus. In: DL Oliver, NB Cant, RR Fay, AN Popper (eds), The mammalian auditory pathways: synaptic organization and microcircuits. Springer Handbook of Auditory Research, vol 65. Springer, Cham, pp 73–99. https://doi.org/10.1007/978-3-319-71798-2_4

  26. Joris PX, Carney LH, Smith PH, Yin TC (1994) Enhancement of neural synchronization in the anteroventral cochlear nucleus. I. Responses to tones at the characteristic frequency. J Neurophysiol 71(3):1022–1036. https://doi.org/10.1152/jn.1994.71.3.1022

  27. Horowitz SS, Stamper SA, Simmons JA (2008) Neuronal connexin expression in the cochlear nucleus of big brown bats. Brain Res 1197:76–84. https://doi.org/10.1016/j.brainres.2007.12.048

    Article  CAS  PubMed  Google Scholar 

  28. Covey E, Casseday JH (1999) Timing in the auditory system of the bat. Ann Rev Physiol 61:457–476. https://doi.org/10.1146/annurev.physiol.61.1.457

    Article  CAS  Google Scholar 

  29. Luo J, Maciás S, Ness TV, Einevoll GT, Zhang K, Moss CF (2018) Neural timing of stimulus events with microsecond precision. PLOS Biol 16(10):e2006422. https://doi.org/10.1371/journal.pbio.2006422

  30. Simmons JA (1993) Evidence for perception of fine echo delay and phase by the FM bat, Eptesicus fuscus. J Comp Physiol A 172:533–547. https://doi.org/10.1007/BF00213677

    Article  CAS  PubMed  Google Scholar 

  31. Simmons JA, Ferragamo MJ, Sanderson MI (2003) Echo delay versus spectral cues for temporal hyperacuity in the big brown bat, Eptesicus fuscus. J Comp Physiol Neuroethol Sens Neural Behav Physiol 189:693–702. https://doi.org/10.1007/s00359-003-0444-9

    Article  CAS  Google Scholar 

  32. Di Palma F, Alfoldi J, Johnson J, Berlin A, Gnerre S, MacCallum JDI, Young S, Walker BJ, Lindblad-Toh K (2012) The draft genome of Eptesicus fuscus. The Broad Institute Genome Assembly & Analysis Group, Computational R&D Group, and Sequencing Platform. https://www.ncbi.nlm.nih.gov/assembly/GCF_000308155.1/

  33. Timothy M, Forlano PM (2019) A versatile macro-based neurohistological images analysis suite for ImageJ focused on automated and standardized user interaction and reproducible data output. J Neurosci Meth 324(108286). https://doi.org/10.1016/j.jneumeth.2019.04.009

  34. Rasband WS (1997–2018) ImageJ. U. S. National Institutes of Health, Bethesda, Maryland, USA. https://imagej.nih.gov/ij/, 1997–2018

  35. Deans MR, Gibson JR, Sellitto C, Connors BW, Paul DL (2001) Synchronous activity of inhibitory networks in neocortex requires electrical synapses containing connexin36. Neuron 31(3):477–485. https://doi.org/10.1016/S0896-6273(01)00373-7

    Article  CAS  PubMed  Google Scholar 

  36. Covey E, Casseday JH (1995) The lower brainstem auditory pathways. In: AN Popper, RR Fay (eds), Hearing by bats. Springer Handbook of Auditory Research, vol 5. Springer, New York, pp 235–295. https://doi.org/10.1007/978-1-4612-2556-0_6

  37. Hall JG (1969) The cochlea and the cochlear nuclei in the bat. Acta Otolaryngol 67(5):490–500. https://doi.org/10.3109/00016486909125476

    Article  CAS  PubMed  Google Scholar 

  38. Haplea S, Covey E, Casseday JH (1994) Frequency tuning and response latencies at three levels in the brainstem of the echolocating bat, Eptesicus fuscus. J Comp Physiol A Sens Neural Behav Physiol 174(6):671–683. https://doi.org/10.1007/BF00192716

    Article  CAS  Google Scholar 

  39. Rosenberger MH, Fremouw T, Casseday JH, Covey E (2003) Expression of the Kv1.1 ion channel subunit in the auditory brainstem of the big brown bat, Eptesicus fuscus. J Comp Neurol 462(1):101–120. https://doi.org/10.1002/cne.10713

  40. Godfrey DA, Lee AC, Hamilton WD, Benjamin LC, Vishwanath S, Simo H, Godfrey LM, Mustapha AIAA, Heffner RS (2016) Volumes of cochlear nucleus regions in rodents. Hear Res 339:161–174. https://doi.org/10.1016/j.heares.2016.07.003

    Article  PubMed  PubMed Central  Google Scholar 

  41. Vater M (1982) Single unit responses in cochlear nucleus of horseshoe bats to sinusoidal frequency and amplitude modulated signals. J Comp Physiol 149:369–388. https://doi.org/10.1007/BF00619153

    Article  Google Scholar 

  42. Lauer AM, Connelly CJ, Graham H, Ryugo DK (2013) Morphological characterization of bushy cells and their inputs in the laboratory mouse (Mus musculus) anteroventral cochlear nucleus. PLoS ONE 8(8):e73308. https://doi.org/10.1371/journal.pone.0073308

  43. Oertel D, Bal R, Gardner SM, Smith PH, Joris PX (2000) Detection of synchrony in the activity of auditory nerve fibers by octopus cells of the mammalian cochlear nucleus. Proc Natl Acad Sci USA 97:11773–11779. https://doi.org/10.1073/pnas.97.22.11773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kemmer M, Vater M (1997) The distribution of GABA and glycine immunostaining in the cochlear nucleus of the mustached bat (Pteronotus parnellii). Cell Tissue Res 287:487–506. https://doi.org/10.1007/s004410050773

    Article  CAS  PubMed  Google Scholar 

  45. Rubio ME, Gudsnuk KA, Smith Y, Ryugo DK (2008) Revealing the molecular layer of the primate dorsal cochlear nucleus. Neurosci 154:99–113. https://doi.org/10.1016/j.neuroscience.2007.12.016

    Article  CAS  Google Scholar 

  46. Carter ME (2004) A stereotaxic brain atlas of the big brown bat. BatLab, University of Washington, Seattle WA, Eptesicus fuscus

    Google Scholar 

  47. Parenti R, Gulisano M, Zappala’ A, Cicirata F (2000) Expression of connexin36 mRNA in adult rodent brain. NeuroReport 11(7):1497–1502

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Gilad Barnea for providing mouse specimens, Carolina Veltri for assistance in data collection, and Kelsey N. Hom for advice regarding ImageJ. Portions of this work were presented at the meetings of the Acoustical Society of America (2012), Society for Neuroscience (2012), and the Association for Research in Otolaryngology (2014).

Funding

This research was supported by grants from the National Science Foundation (0843522) and the Office of Naval Research (N00014-09–1-0691) to JAS. Data analysis and manuscript preparation were supported by an Office of Naval Research Multidisciplinary University Research Initiative (N00014-17–1-2736) grant to JAS and AMS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Megela Simmons.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Accomando, A.W., Johnson, M.A., McLaughlin, M.A. et al. Connexin36 RNA Expression in the Cochlear Nucleus of the Echolocating Bat, Eptesicus fuscus. JARO 24, 281–290 (2023). https://doi.org/10.1007/s10162-023-00898-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-023-00898-y

Keywords

Navigation