Skip to main content
Log in

Vestibulo-Ocular Reflex Short-Term Adaptation Is Halved After Compensation for Unilateral Labyrinthectomy

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Several prior studies, including those from this laboratory, have suggested that vestibulo-ocular reflex (VOR) adaptation and compensation are two neurologically related mechanisms. We therefore hypothesised that adaptation would be affected by compensation, depending on the amount of overlap between these two mechanisms. To better understand this overlap, we examined the effect of gain-increase (gain = eye velocity/head velocity) adaptation training on the VOR in compensated mice since both adaptation and compensation mechanisms are presumably driving the gain to increase. We tested 11 cba129 controls and 6 α9-knockout mice, which have a compromised efferent vestibular system (EVS) known to affect both adaptation and compensation mechanisms. Baseline VOR gains across frequencies (0.2 to 10 Hz) and velocities (20 to 100°/s) were measured on day 28 after unilateral labyrinthectomy (UL) and post-adaptation gains were measured after gain-increase training on day 31 post-UL. Our findings showed that after chronic compensation gain-increase adaptation, as a percentage of baseline, in both strains of mice (~14%), was about half compared to their previously reported healthy, non-operated counterparts (~32%). Surprisingly, there was no difference in gain-increase adaptation between control and α9-knockout mice. These data support the notion that adaptation and compensation are separate but overlapping processes. They also suggest that half of the original adaptation capacity remained in chronically compensated mice, regardless of EVS compromise associated with α9-knockout mice, and strongly suggest VOR adaptation training is a viable treatment strategy for vestibular rehabilitation therapy and, importantly, augments the compensatory process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albus JS (1971) A theory of cerebellar function. Math Biosci 10:25–61

    Article  Google Scholar 

  • Aleisa M, Cullen KE (2007) Vestibular compensation after unilateral labyrinthectomy: normal versus cerebellar dysfunctional mice. J Otolaryngolgy 36:315–332

    Google Scholar 

  • Beraneck M, McKee JL, Aleisa M, Cullen KE (2008) Asymmetric recovery in cerebellar-deficient mice following unilateral labyrinthectomy. J Neurophysiol 100:945–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beraneck M, Idoux E (2012) Reconsidering the role of neuronal intrinsic properties and neuromodulation in vestibular homeostasis. Front Neurol 3:1–13

    Article  Google Scholar 

  • Boyden ES, Katoh A, Raymond JL (2004) Cerebellum-dependent learning: the role of multiple plasticity mechanisms. Annu Rev Neurosci 27:581–609

    Article  CAS  PubMed  Google Scholar 

  • Carcaud J, França de Barros F, Idoux E, Eugène D, Reveret L, Moore LE, Vidal PP, Beraneck M (2017) Long-lasting visuo-vestibular mismatch in freely-behaving mice reduces the vestibulo-ocular reflex and leads to neural changes in the direct vestibular pathway. eNeuro 4:1

  • Clendaniel RA, Lasker DM, Minor LB (2001) Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. IV. Responses after spectacle-induced adaptation. J Neurophysiol 86:1594–1611

  • Clendaniel RA, Lasker DM, Minor LB (2002) Differential adaptation of the linear and nonlinear components of the horizontal vestibuloocular reflex in squirrel monkeys. J Neurophysiol 88:3534–3540

    Article  PubMed  Google Scholar 

  • De Zeeuw CI, Hansel C, Bian F, Koekkoek SK, van Alphen AM, Linden DJ, Oberdick J (1998) Expression of a protein kinase C inhibitor in Purkinje cells blocks cerebellar LTD and adaptation of the vestibulo-ocular reflex. Neuron 20:495–508

    Article  PubMed  Google Scholar 

  • De Zeeuw CI, Yeo CH (2005) Time and tide in cerebellar memory formation. Curr Opin Neurobiol 15(667–74):2005

    Google Scholar 

  • Dieringer N (2003) Activity-related postlesional vestibular reorganization. Ann NY Acad Sci 1004:50–60

    Article  PubMed  Google Scholar 

  • Elgoyhen AB, Johnson JS, Boulter J, Vetter DE, Heinemann S (1994) Alpha 9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79:705–715

    Article  CAS  PubMed  Google Scholar 

  • Faulstich MB, Van Alphen AM, Luo C, Du Lac S, De Zeeuw CI (2006) Oculomotor plasticity during vestibular compensation does not depend on cerebellar LTD. J Neurophysiol 96:1187–1195

    Article  CAS  PubMed  Google Scholar 

  • Gittis AH, du Lac S (2006) Intrinsic and synaptic plasticity in vestibular system. Curr Opin Neurobiol 16:385–390

    Article  CAS  PubMed  Google Scholar 

  • Goto MM, Romero GG, Balaban CD (1997) Transient changes in flocculonodular lobe protein kinase C expression during vestibular compensation. J Neurophysiol 17:4367–4381

    CAS  Google Scholar 

  • Goto F, Straka H, Dieringer N (2000) Expansion of afferent vestibular signals after the section of one of the vestibular nerve branches. J Neurophysiol 84:581–584

    Article  CAS  PubMed  Google Scholar 

  • Han GC, Lasker DM, Vetter DE, Minor LB (2007) Extracellular recordings from semicircular canal afferents in mice that lack the alpha 9 nicotinic acetylcholine receptor subunit. (abstract) Abstr Midwinter Res Meet Assoc Res Otolaryngol 30:327

  • Hiel H, Elgoyen AB, Drescher DG, Morely BJ (1996) Expression of nicotinic acetylcholine receptor mRNA in the adult rat peripheral vestibular system. Brain Res 738:347–352

    Article  CAS  PubMed  Google Scholar 

  • Highstein S (1973) Synaptic linkage in the vestibulo-ocular and cerebello-vestibular pathways to the VIth nucleus in the rabbit. Exp Brain Res 17:301–314

    Article  CAS  PubMed  Google Scholar 

  • Hübner PP, Khan SI, Migliaccio AA (2014) Velocity-selective adaptation of the horizontal and cross-axis vestibulo-ocular reflex in the mouse. Exp Brain Res 232:3035–3046

    Article  PubMed  Google Scholar 

  • Hübner PP, Lim R, Brichta AM, Migliaccio AA (2013) Glycine receptor deficiency and its effect on the horizontal vestibulo-ocular reflex: a study on the SPD1J mouse. J Assoc Res Otolaryngol 14:249–259

    Article  PubMed  PubMed Central  Google Scholar 

  • Hübner PP, Khan SI, Migliaccio AA (2015) The mammalian efferent vestibular system plays a crucial role in the high-frequency response and short-term adaptation of the vestibulo-ocular reflex. J Neurophysiol 114:3154–3165

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hübner PP, Khan SI, Migliaccio AA (2017) The mammalian efferent vestibular system plays a crucial role in vestibulo-ocular reflex compensation after unilateral labyrinthectomy. J Neurophysiol 117:1553–1568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ito M, Shiida T, Yagi N, Yamamoto M (1973) Visual influence on rabbit horizontal vestibulo-ocular reflex presumably effected via the cerebellar flocculus. Brain Res 65:170–174

    Article  Google Scholar 

  • Kassardjian CD, Tan YF, Chung JY, Heskin R, Peterson MJ, Broussard DM (2005) The site of a motor memory shifts with consolidation. J Neurosci 25:7979–7985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan SI, Hübner PP, Brichta AM, Smith DW, Migliaccio AA (2017) Ageing reduces the high-frequency and short-term adaptation of the vestibulo-ocular reflex in mice. Neurobiol Aging 51:122–131

    Article  PubMed  Google Scholar 

  • Khan SI, Della Santina CC, Migliaccio AA (2019a) Angular vestibulo-ocular reflex responses in Otop1 mice. I. Otolith sensor input is essential for gravity context-specific adaptation. J Neurophysiol 121:2291–2299

  • Khan SI, Della Santina CC, Migliaccio AA (2019b) Angular vestibulo-ocular reflex responses in Otop1 mice. II. Otolith sensor input improves compensation after unilateral labyrinthectomy. J Neurophysiol121:2300–2307

  • Kimpo RR, Boyden ES, Katoh A, Ke MC, Raymond JL (2005) Distinct patterns of stimulus generalization of increases and decreases in VOR gain. J Neurophysiol 94:3092–3100

    Article  PubMed  Google Scholar 

  • Koekkoek SK, Van Alphen AM, Vd Burg J, Grosveld F, Galjart N, De Zeeuw CI (1997) Gain adaptation and phase dynamics of compensatory eye movements in mice. Genes Funct 1:175–190

    Article  CAS  PubMed  Google Scholar 

  • Kujawa SG, Glattke TJ, Fallon M, Bobbin RP (1992) Intracochlear application of acetylcholine alters sound-induced mechanical events within the cochlear partition. Hear Res 61:106–116

    Article  CAS  PubMed  Google Scholar 

  • Kujawa SG, Glattke TJ, Fallon M, Bobbin RP (1994) A nicotinic-like receptor mediates suppression of distortion product otoacoustic emissions by contralateral sound. Hear Res 74:122–134

    Article  CAS  PubMed  Google Scholar 

  • Lasker DM, Backous DD, Lysakowski A, Davis GL, Minor LB (1999) Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. ii. responses after canal plugging. J Neurophysiol 82:1271–1285

  • Lasker DM, Hullar TE, Minor LB (2000) Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. III Responses after Labyrinthectomy J Neurophysiol 83:2482–2496

    CAS  PubMed  Google Scholar 

  • Maekawa K, Simpson JI (1973) Climbing fiber responses evoked in vestibulocerebellum of rabbit from visual system. J Neurophysiol 36:649–666

    Article  CAS  PubMed  Google Scholar 

  • Maioli C, Precht W (1985) On the role of vestibulo-ocular reflex plasticity in recovery after unilateral peripheral vestibular lesions. Exp Brain Res 59:267–272

    Article  CAS  PubMed  Google Scholar 

  • Marr D (1969) A theory of cerebellar cortex. J Physiology 202:437–470

    Article  CAS  Google Scholar 

  • Migliaccio AA, MacDougall HG, Minor LB, Della Santina CC (2005) Inexpensive system for real-time 3-dimensional video-oculography using a fluorescent marker array. J Neuroscie Methods 143:141–150

    Article  Google Scholar 

  • Migliaccio AA, Meierhofer R, Della Santina CC (2010) Characterization of the 3D angular vestibulo-ocular reflex in C57BL6 mice. Exp Brain Res 210:489–501

    Article  PubMed  PubMed Central  Google Scholar 

  • Migliaccio AA, Schubert MC, Jiradejvong P, Lasker DM, Clendaniel RA, Minor LB (2004a) The 3-dimensional vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. Exp Brain Res 159:433–446

    Article  PubMed  Google Scholar 

  • Migliaccio AA, Minor LB, Carey JP (2004b) Vergence-mediated modulation of the human horizontal vestibulo-ocular reflex is eliminated by a partial peripheral gentamicin lesion. Exp Brain Res 159:92–98

    PubMed  Google Scholar 

  • Migliaccio AA, Minor LB, Carey JP (2008) Vergence-mediated modulation of the human angular vestibulo-ocular reflex is unaffected by canal plugging. Exp Brain Res 186:581–587

    Article  PubMed  Google Scholar 

  • Migliaccio AA, Schubert MC (2013) Unilateral adaptation of the human angular vestibulo-ocular reflex. J Assoc Res Otolaryngol 14:29–36

    Article  PubMed  Google Scholar 

  • Migliaccio AA, Schubert MC (2014) Pilot study of a new rehabilitation tool: Improved unilateral short-term adaptation of the human angular vestibulo-ocular reflex. Otol Neurotol 35:e310–e316

    Article  PubMed  Google Scholar 

  • Miles FA, Fuller JH, Braitman DJ, Dow BM (1980) Long-term adaptive changes in primate vestibuloocular reflex. III Electrophysiological observations in the flocculus of normal monkeys. J Neurophysiol 43:1437–1476

  • Minor LB, Lasker DM (2009) Tonic and phasic contributions to the pathways mediating compensation and adaptation of the vestibulo-ocular reflex. J Vestibul Res Equil 19:159–170

    Article  Google Scholar 

  • Minor LB, Lasker DM, Backous DD, Hullar TE (1999) Horizontal vestibuloocular reflex evoked by high-acceleration rotations in the squirrel monkey. I Normal Responses J Neurophysiol 82:1254–1270

    Article  CAS  PubMed  Google Scholar 

  • Nagao S, Kitamura T, Nakamura N, Hiramatsu T, Yamada J (1997) Differences of the primate flocculus and ventral paraflocculus in the mossy and climbing fiber input organization. J Comp Neurol 382:480–498

    Article  CAS  PubMed  Google Scholar 

  • Poppi LA, Tabatabaee H, Drury HR, Jobling P, Callister RJ, Migliaccio AA, Jordan PM, Holt JC, Rabbitt RD, Lim R, Brichta AM (2018) ACh-induced hyperpolarization and decreased resistance in mammalian type II vestibular hair cells. J Neurophysiol 119:312–325

    Article  CAS  PubMed  Google Scholar 

  • Poppi LA, Holt JC, Lim R, Brichta AM (2020) A review of efferent cholinergic synaptic transmission in the vestibular periphery and its functional implications. J Neurophysiol 123:608–629

    Article  CAS  PubMed  Google Scholar 

  • Ramakrishna Y, Manca M, Glowatzki E, Sadeghi SG (2021) Cholinergic modulation of membrane properties of calyx terminals in the vestibular periphery. Neuroscience 452:98–110

    Article  CAS  PubMed  Google Scholar 

  • Rassaian N, Sadeghi NG, Sabetazad B, McNerney KM, Burkard RF, Sadeghi SG (2019) Using unidirectional rotations to improve vestibular system asymmetry in patients with vestibular dysfunction. J Vis Exp 150:e60053. https://doi.org/10.3791/60053

  • Rinaudo CN, Schubert MC, Cremer PD, Figtree WVC, Todd CJ, Migliaccio AA (2019a) Improved oculomotor physiology and behavior after unilateral incremental adaptation training in a person with chronic vestibular hypofunction: a case report. Phys Ther 99:1326–1333

    Article  PubMed  Google Scholar 

  • Rinaudo CN, Schubert MC, Figtree WVC, Todd CJ, Migliaccio AA (2019b) Human vestibulo-ocular reflex adaptation is frequency-selective. J Neurophysiol 122:984–993

    Article  PubMed  Google Scholar 

  • Rinaudo CN, Schubert MC, Cremer PD, Figtree WVC, Todd CJ, Migliaccio AA (2021) Once-daily incremental vestibular-ocular reflex adaptation training in patients with chronic peripheral vestibular hypofunction: a one-week randomized-controlled study. J Neurol Phys Ther 45:87–100

    Article  PubMed  Google Scholar 

  • Ruggero MA, Narayan SS, Temchin AN, Recio A (2000) Mechanical bases of frequency tuning and neural excitation at the base of the cochlea: comparison of basilar-membrane vibrations and auditory-nerve-fiber responses in chinchilla. Proc Natl Acad Sci U S A 97:11744–11750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato T (1989) Interactions of visual stimuli in the receptive fields of inferior temporal neurons in awake macaques. Exp Brain Res 77:23–30

    Article  CAS  PubMed  Google Scholar 

  • Scudder CA, Fuchs AF (1992) Physiological and behavioural identification of vestibular nucleus neurons mediating the horizontal vestibuloocular reflex in trained rhesus monkeys. J Neurophysiol 68:244–264

    Article  CAS  PubMed  Google Scholar 

  • Schubert MC, Migliaccio AA, Clendaniel RA, Allak A, Carey JP (2008) Mechanism of dynamic visual acuity recovery with vestibular rehabilitation. Arch Phys Med Rehabil 89:500–507

    Article  PubMed  PubMed Central  Google Scholar 

  • Shinder ME, Purcell IM, Kaufman GD, Perachio AA (2001) Vestibular efferent neurons project to the flocculus. Brain Res 889:288–294

    Article  CAS  PubMed  Google Scholar 

  • Shinder ME, Perachio AA, Kaufman GD (2005) VOR and Fos response during acute vestibular compensation in the Mongolian gerbil in darkness and in light. Brain Res 1038:183–197

    Article  CAS  PubMed  Google Scholar 

  • Stahl JS (2004) Using eye movements to assess brain function in mice. Vision Res  44(28):3401–10. https://doi.org/10.1016/j.visres.2004.09.011. PMID: 15536008

  • Stone L, Lisberger S (1990a) Visual responses of Purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys. I Simple Spikes J Neurophysiol 63:1241–1261

    Article  CAS  PubMed  Google Scholar 

  • Stone L, Lisberger S (1990b) Visual responses of Purkinje cells in the cerebellar flocculus during smooth-pursuit eye movements in monkeys. II Complex Spikes J Neurophysiol 63:1262–1275

    Article  CAS  PubMed  Google Scholar 

  • Straka H, Vibert N, Vidal PP, Moore LE, Dutia MB (2005) Intrinsic membrane properties of vertebrate vestibular neurons: function, development and plasticity. Prog Neurobiol 76:349–392

    Article  CAS  PubMed  Google Scholar 

  • Straka H, Lambert FM, Pfanzelt S, Beraneck M (2009) Vestibulo-ocular reflex signal transformation in frequency-tuned channels. Ann N Y Acad Sci 1164:37–44

    Article  PubMed  Google Scholar 

  • Ushio M, Minor LB, Della Santina CC, Lasker DM (2011) Unidirectional rotations produce asymmetric changes in horizontal VOR gain before and after unilateral labyrinthectomy in macaques. Exp Brain Res 210:651–660

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Alphen AM, Schepers T, Luo C, De Zeeuw CI (2002) Motor performance and motor learning in Lurcher mice. Ann NY Acad Sci 978:413–424

    Article  PubMed  Google Scholar 

  • Vetter DE, Liberman MC, Mann J, Barhanin J, Boulter J, Brown MC, Saffiote-Kolman J, Heinemann SF, Elgoyhen AB (1999) Role of alpha9 nicotinic ACh receptor subunits in the development and function of cochlear efferent innervation. Neuron 23:93–103

    Article  CAS  PubMed  Google Scholar 

  • Vibert N, Bantikyan A, Babalian A, Serafin M, Mühlethaler M, Vidal PP (1999) Post-lesional plasticity in the central nervous system of the guinea-pig: a top-down adaptation process?. NSC 94:1–5

Download references

Acknowledgements

A. A. Migliaccio and this work were supported by a National Health and Medical Research Council of Australia (NHMRC) Biomedical Career Development Award CDA-568736 and NHMRC Project Grant APP1010896. P. P. Hübner was supported by a University of New South Wales (UNSW) International Research Scholarship and a Neuroscience Research Australia (NeuRA) supplementary scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Americo A. Migliaccio.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, S.I., Hübner, P.P., Brichta, A.M. et al. Vestibulo-Ocular Reflex Short-Term Adaptation Is Halved After Compensation for Unilateral Labyrinthectomy. JARO 23, 457–466 (2022). https://doi.org/10.1007/s10162-022-00844-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-022-00844-4

Keywords

Navigation