Skip to main content
Log in

Neural Contributions to the Cochlear Summating Potential: Spiking and Dendritic Components

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Using electrocochleography, the summating potential (SP) is a deflection from baseline to tones and an early rise in the response to clicks. Here, we use normal hearing gerbils and gerbils with outer hair cells removed with a combination of furosemide and kanamycin to investigate cellular origins of the SP. Round window electrocochleography to tones and clicks was performed before and after application of tetrodotoxin to prevent action potentials, and then again after kainic acid to prevent generation of an EPSP. With appropriate subtractions of the response curves from the different conditions, the contributions to the SP from outer hair cells, inner hair cell, and neural “spiking” and “dendritic” responses were isolated. Like hair cells, the spiking and dendritic components had opposite polarities to tones — the dendritic component had negative polarity and the spiking component had positive polarity. The magnitude of the spiking component was larger than the dendritic across frequencies and intensities. The onset to tones and to clicks followed a similar sequence; the outer hair cells responded first, then inner hair cells, then the dendritic component, and then the compound action potential of the spiking response. These results show the sources of the SP include at least the four components studied, and that these have a mixture of polarities and magnitudes that vary across frequency and intensity. Thus, multiple possible interactions must be considered when interpreting the SP for clinical uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

source could be isolated

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Brown DJ, Patuzzi RB (2010) Evidence that the compound action potential (CAP) from the auditory nerve is a stationary potential generated across dura mater. Hear Res 267:12–26

    Article  PubMed  Google Scholar 

  • Council NR (2011) Guide for the Care and Use of Laboratory Animals, 8th edn. The National Academies Press, Washington, DC

    Google Scholar 

  • Dallos P (1973) The auditory periphery biophysics and physiology. Academic Press Inc, New York

    Google Scholar 

  • Dallos P, Cheatham MA (1976) Production of cochlear potentials by inner and outer hair cells. J Acoust Soc Am 60:510–512

    Article  CAS  PubMed  Google Scholar 

  • Dallos P, Schoeny ZG, Cheatham MA (1972) Cochlear summating potentials. Descriptive Aspects Acta Otolaryngol Suppl 302:1–46

    CAS  PubMed  Google Scholar 

  • Dauman R, Aran JM, Charlet de Sauvage R, Portmann M (1988) Clinical significance of the summating potential in Meniere’s disease. Am J Otol 9:31–38

    CAS  PubMed  Google Scholar 

  • Davis H, Fernandez C, Mc AD (1950) The excitatory process in the cochlea. Proc Natl Acad Sci U S A 36:580–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolan DF, Xi L, Nuttall AL (1989) Characterization of an EPSP-like potential recorded remotely from the round window. J Acoust Soc Am 86:2167–2171

    Article  CAS  PubMed  Google Scholar 

  • Durrant JD, Wang J, Ding DL, Salvi RJ (1998) Are inner or outer hair cells the source of summating potentials recorded from the round window? J Acoust Soc Am 104:370–377

    Article  CAS  PubMed  Google Scholar 

  • Eggermont JJ (2017) Ups and downs in 75 years of electrocochleography. Front Syst Neurosci 11:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Ferraro J, Best LG, Arenberg IK (1983) The use of electrocochleography in the diagnosis, assessment, and monitoring of endolymphatic hydrops. Otolaryngol Clin North Am 16:69–82

    Article  CAS  PubMed  Google Scholar 

  • Ferraro JA, Tibbils RP (1999) SP/AP area ratio in the diagnosis of Meniere’s disease. Am J Audiol 8:21–28

    Article  CAS  PubMed  Google Scholar 

  • Ferraro JA, Durrant JD (2006) Electrocochleography in the evaluation of patients with Meniere’s disease/endolymphatic hydrops. J Am Acad Audiol 17:45–68

    Article  PubMed  Google Scholar 

  • Ferraro JA, Thedinger BS, Mediavilla SJ, Blackwell WL (1994) Human summating potential to tone bursts: observations on tympanic membrane versus promontory recordings in the same patients. J Am Acad Audiol 5:24–29

    CAS  PubMed  Google Scholar 

  • Fontenot TE, Giardina CK, Fitzpatrick DC (2017) A model-based approach for separating the cochlear microphonic from the auditory nerve neurophonic in the ongoing response using electrocochleography. Front Neurosci 11:592

    Article  PubMed  PubMed Central  Google Scholar 

  • Fontenot TE, Giardina CK, Dillon MT, Rooth MA, Teagle HF, Park LR, Brown KD, Adunka OF, Buchman CA, Pillsbury HC, Fitzpatrick DC (2019) Residual cochlear function in adults and children receiving cochlear implants: correlations with speech perception outcomes. Ear Hear 40:577–591

    Article  PubMed  PubMed Central  Google Scholar 

  • Forgues M, Koehn HA, Dunnon AK, Pulver SH, Buchman CA, Adunka OF, Fitzpatrick DC (2014) Distinguishing hair cell from neural potentials recorded at the round window. J Neurophysiol 111:580–593

    Article  PubMed  Google Scholar 

  • Gibson WP (1991) The use of electrocochleography in the diagnosis of Meniere’s disease. Acta Otolaryngol Suppl 485:46–52

    Article  CAS  PubMed  Google Scholar 

  • Gibson WP, Moffat DA, Ramsden RT (1977) Clinical electrocochleography in the diagnosis and management of Meniere’s disorder. Audiology 16:389–401

    Article  CAS  PubMed  Google Scholar 

  • Grant KJ, Mepani AM, Wu P, Hancock KE, de Gruttola V, Liberman MC, Maison SF (2020) Electrophysiological markers of cochlear function correlate with hearing-in-noise performance among audiometrically normal subjects. J Neurophysiol 124:418–431

    Article  PubMed  PubMed Central  Google Scholar 

  • Hancock KE, O’Brien B, Santarelli R, Liberman MC, Maison SF (2021) The summating potential in human electrocochleography: Gaussian models and Fourier analysis. J Acoust Soc Am 150:2492

    Article  PubMed  Google Scholar 

  • Harris MS, Riggs WJ, Giardina CK, O’Connell BP, Holder JT, Dwyer RT, Koka K, Labadie RF, Fitzpatrick DC, Adunka OF (2017) Patterns seen during electrode insertion using intracochlear electrocochleography obtained directly through a cochlear implant. Otol Neurotol 38:1415–1420

    Article  PubMed  PubMed Central  Google Scholar 

  • He W, Porsov E, Kemp D, Nuttall AL, Ren T (2012) The group delay and suppression pattern of the cochlear microphonic potential recorded at the round window. PloS One 7:e34356.

  • Helmstaedter V, Lenarz T, Erfurt P, Kral A, Baumhoff P (2017) The summating potential is a reliable marker of electrode position in electrocochleography: cochlear implant as a theragnostic probe. Ear Hear.

  • Henry KR (1995) Auditory nerve neurophonic recorded from the round window of the Mongolian gerbil. Hear Res 90:176–184

    Article  CAS  PubMed  Google Scholar 

  • Honrubia V, Ward PH (1969) Properites of the summating potential of the guinea pig’s cochlea. J Acoust Soc Am 45:1443–1450

    Article  CAS  PubMed  Google Scholar 

  • Hornibrook J (2017) Tone burst electrocochleography for the diagnosis of clinically certain meniere’s disease. Front Neurosci 11:301

    Article  PubMed  PubMed Central  Google Scholar 

  • Hutson KA, Pulver SH, Ariel P, Naso C, Fitzpatrick DC (2021) Light sheet microscopy of the gerbil cochlea. J Comp Neurol 529:757–785

    Article  CAS  PubMed  Google Scholar 

  • Iseli C, Gibson W (2010) A comparison of three methods of using transtympanic electrocochleography for the diagnosis of Meniere’s disease: click summating potential measurements, tone burst summating potential amplitude measurements, and biasing of the summating potential using a low frequency tone. Acta Otolaryngol 130:95–101

    Article  PubMed  Google Scholar 

  • Kennedy AE, Kaf WA, Ferraro JA, Delgado RE, Lichtenhan JT (2017) Human summating potential using continuous loop averaging deconvolution: response amplitudes vary with tone burst repetition rate and duration. Front Neurosci 11:429

    Article  PubMed  PubMed Central  Google Scholar 

  • Kupperman R (1966) The dynamic DC potential in the cochlea of the guinea pig (summating potential). Acta Otolaryngol 62:465–480

    Article  CAS  PubMed  Google Scholar 

  • Liberman MC, Epstein MJ, Cleveland SS, Wang H, Maison SF (2016) Toward a differential diagnosis of hidden hearing loss in humans. PloS One 11:e0162726.

  • McMahon CM, Patuzzi RB (2002) The origin of the 900 Hz spectral peak in spontaneous and sound-evoked round-window electrical activity. Hear Res 173:134–152

    Article  PubMed  Google Scholar 

  • McMahon CM, Patuzzi RB, Gibson WP, Sanli H (2008) Frequency-specific electrocochleography indicates that presynaptic and postsynaptic mechanisms of auditory neuropathy exist. Ear Hear 29:314–325

    Article  PubMed  Google Scholar 

  • Mepani AM, Kirk SA, Hancock KE, Bennett K, de Gruttola V, Liberman MC, Maison SF (2020) Middle ear muscle reflex and word recognition in “Normal-Hearing” adults: evidence for cochlear synaptopathy? Ear Hear 41:25–38

    Article  PubMed  PubMed Central  Google Scholar 

  • Mikulec AA, Plontke SK, Hartsock JJ, Salt AN (2009) Entry of substances into perilymph through the bone of the otic capsule after intratympanic applications in guinea pigs: implications for local drug delivery in humans. Otol Neurotol 30:131–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Muller M (1996) The cochlear place-frequency map of the adult and developing Mongolian gerbil. Hear Res 94:148–156

    Article  CAS  PubMed  Google Scholar 

  • Pappa AK, Hutson KA, Scott WC, Wilson JD, Fox KE, Masood MM, Giardina CK, Pulver SH, Grana GD, Askew C, Fitzpatrick DC (2019) Hair cell and neural contributions to the cochlear summating potential. J Neurophysiol 121:2163–2180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riggs WJ, Roche JP, Giardina CK, Harris MS, Bastian ZJ, Fontenot TE, Buchman CA, Brown KD, Adunka OF, Fitzpatrick DC (2017) Intraoperative electrocochleographic characteristics of auditory neuropathy spectrum disorder in cochlear implant subjects. Front Neurosci 11:416

    Article  PubMed  PubMed Central  Google Scholar 

  • Santarelli R (2010) Information from cochlear potentials and genetic mutations helps localize the lesion site in auditory neuropathy. Genome Med 2:91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santarelli R, Starr A, Michalewski HJ, Arslan E (2008) Neural and receptor cochlear potentials obtained by transtympanic electrocochleography in auditory neuropathy. Clin Neurophysiol 119:1028–1041

    Article  PubMed  Google Scholar 

  • Santarelli R, Rossi R, Scimemi P, Cama E, Valentino ML, La Morgia C, Caporali L, Liguori R, Magnavita V, Monteleone A, Biscaro A, Arslan E, Carelli V (2015) OPA1-related auditory neuropathy: site of lesion and outcome of cochlear implantation. Brain 138:563–576

    Article  PubMed  PubMed Central  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682

    Article  CAS  PubMed  Google Scholar 

  • Sellick P, Patuzzi R, Robertson D (2003) Primary afferent and cochlear nucleus contributions to extracellular potentials during tone-bursts. Hear Res 176:42–58

    Article  PubMed  Google Scholar 

  • Trecca EMC, Riggs WJ, Mattingly JK, Hiss MM, Cassano M, Adunka OF (2020a) Electrocochleography and cochlear implantation: a systematic review. Otol Neurotol 41:864–878

    Article  PubMed  Google Scholar 

  • Trecca EMC, Riggs WJ, Hiss MM, Mattingly JK, Cassano M, Prevedello DM, Adunka OF (2020b) Intraoperative monitoring of auditory function during lateral skull base surgery. Otol Neurotol 41:100–104

    Article  PubMed  Google Scholar 

  • van Emst MG, Klis SF, Smoorenburg GF (1995) Tetraethylammonium effects on cochlear potentials in the guinea pig. Hear Res 88:27–35

    Article  PubMed  Google Scholar 

  • Weder S, Bester C, Collins A, Shaul C, Briggs RJ, O’Leary S (2021) Real time monitoring during cochlear implantation: increasing the accuracy of predicting residual hearing outcomes. Otol Neurotol 42:e1030–e1036

    Article  PubMed  Google Scholar 

  • Wever EG, Bray C (1930) Action currents in the auditory nerve in response to acoustic stimulation. Proc Nat Acad Sci, US A 16:344–350

    Article  CAS  Google Scholar 

  • Zheng XY, Ding DL, McFadden SL, Henderson D (1997) Evidence that inner hair cells are the major source of cochlear summating potentials. Hear Res 113:76–88

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mr. Stephen Pulver for his outstanding technical support for the experiments. This work was supported by the Office of the Assistant Secretary of Defense for Health Affairs through the Hearing Restoration Research Program under Award No. W81XWH-18-HRRP-FARA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas C. Fitzpatrick.

Ethics declarations

Conflict of Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lutz, B.T., Hutson, K.A., Trecca, E.M.C. et al. Neural Contributions to the Cochlear Summating Potential: Spiking and Dendritic Components. JARO 23, 351–363 (2022). https://doi.org/10.1007/s10162-022-00842-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-022-00842-6

Keywords

Navigation