Skip to main content

Infant Pitch and Timbre Discrimination in the Presence of Variation in the Other Dimension

Abstract

Adult listeners perceive pitch with fine precision, with many adults capable of discriminating less than a 1 % change in fundamental frequency (F0). Although there is variability across individuals, this precise pitch perception is an ability ascribed to cortical functions that are also important for speech and music perception. Infants display neural immaturity in the auditory cortex, suggesting that pitch discrimination may improve throughout infancy. In two experiments, we tested the limits of F0 (pitch) and spectral centroid (timbre) perception in 66 infants and 31 adults. Contrary to expectations, we found that infants at both 3 and 7 months were able to reliably detect small changes in F0 in the presence of random variations in spectral content, and vice versa, to the extent that their performance matched that of adults with musical training and exceeded that of adults without musical training. The results indicate high fidelity of F0 and spectral-envelope coding in infants, implying that fully mature cortical processing is not necessary for accurate discrimination of these features. The surprising difference in performance between infants and musically untrained adults may reflect a developmental trajectory for learning natural statistical covariations between pitch and timbre that improves coding efficiency but results in degraded performance in adults without musical training when expectations for such covariations are violated.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Allen EJ, Burton PC, Mesik J et al (2019) Cortical correlates of attention to auditory features. J Neurosci 39:3292–3300. https://doi.org/10.1523/JNEUROSCI.0588-18.2019

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Allen EJ, Burton PC, Olman CA, Oxenham AJ (2017) Representations of pitch and timbre variation in human auditory cortex. J Neurosci 37:1284–1293. https://doi.org/10.1523/JNEUROSCI.2336-16.2016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Allen EJ, Oxenham AJ (2014) Symmetric interactions and interference between pitch and timbre. J Acoust Soc Am 135:1371–1379. https://doi.org/10.1121/1.4863269

    Article  PubMed  PubMed Central  Google Scholar 

  4. ANSI (2013) American national standard acoustical terminology. American National Standards Institute, New York

    Google Scholar 

  5. Benasich AA, Choudhury NA, Realpe-Bonilla T, Roesler CP (2014) Plasticity in developing brain: active auditory exposure impacts prelinguistic acoustic mapping. J Neurosci 34:13349–13363. https://doi.org/10.1523/JNEUROSCI.0972-14.2014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Bendor D, Wang X (2005) The neuronal representation of pitch in primate auditory cortex. Nature 436:1161–1165. https://doi.org/10.1038/nature03867

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Birnholz JC, Benacerraf BR (1983) The development of human fetal hearing. Science 222:516–519

    CAS  Article  Google Scholar 

  8. Borchert EMO, Micheyl C, Oxenham AJ (2011) Perceptual grouping affects pitch judgments across time and frequency. J Exp Psychol Hum Percept Perform 37:257–269. https://doi.org/10.1037/a0020670

    Article  PubMed  PubMed Central  Google Scholar 

  9. Buss E, Taylor CN, Leibold LJ (2014) Factors affecting sensitivity to frequency change in school-age children and adults. J Speech Lang Hear Res 57:1972–1982. https://doi.org/10.1044/2014_JSLHR-H-13-0254

    Article  PubMed  Google Scholar 

  10. Clarkson MG (1996) Infants’ intensity discrimination: spectral profiles. Infant Behav Dev 19:181–190. https://doi.org/10.1016/S0163-6383(96)90017-X

    Article  Google Scholar 

  11. Clarkson MG, Clifton RK, Perris EE (1988) Infant timbre perception: discrimination of spectral envelopes. Percept Psychophys 43:15–20. https://doi.org/10.3758/BF03208968

    CAS  Article  PubMed  Google Scholar 

  12. Corrigall KA, Schellenberg EG, Misura NM (2013) Music training, cognition, and personality. Front Psychol 4. https://doi.org/10.3389/fpsyg.2013.00222

  13. Eggermont JJ, Moore JK (2012) Morphological and functional development of the auditory nervous system. In: Werner L, Fay RR, Popper AN (eds) Human Auditory Development. Springer, New York, pp 61–105

    Chapter  Google Scholar 

  14. Green DM, Swets JA (1966) Signal detection theory and psychophysics. Wiley, New York

    Google Scholar 

  15. Hannon EE, Trehub SE (2005) Metrical categories in infancy and adulthood. Psychol Sci 16:48–55. https://doi.org/10.1111/j.0956-7976.2005.00779.x

    Article  PubMed  Google Scholar 

  16. He C, Trainor LJ (2009) Finding the pitch of the missing fundamental in infants. J Neurosci 29:7718–8822. https://doi.org/10.1523/JNEUROSCI.0157-09.2009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Horn DL, Won JH, Rubinstein JT, Werner LA (2017) Spectral ripple discrimination in normal hearing infants. Ear Hear 38:212–222. https://doi.org/10.1097/AUD.0000000000000373

    Article  PubMed  PubMed Central  Google Scholar 

  18. Houtsma AJM, Smurzynski J (1990) Pitch identification and discrimination for complex tones with many harmonics. J Acoust Soc Am 87:304–310. https://doi.org/10.1121/1.399297

    Article  Google Scholar 

  19. Karzon RG, Nicholas JG (1989) Syllabic pitch perception in 2- to 3-month-old infants. Percept Psychophys 45:10–14. https://doi.org/10.3758/BF03208026

    CAS  Article  PubMed  Google Scholar 

  20. Kitahara T, Goto M, Okuno HG (2005) Pitch-dependent identification of musical instrument sounds. Appl Intell 23:267–275. https://doi.org/10.1007/s10489-005-4612-1

    Article  Google Scholar 

  21. Kohlrausch A, Houtsma AJ (1992) Pitch related to spectral edges of broadband signals. Philos Trans R Soc Lond, B, Biol Sci 336:375–381; discussion 381–382. https://doi.org/10.1098/rstb.1992.0071

  22. Kuhl PK, Stevens E, Hayashi A et al (2006) Infants show a facilitation effect for native language phonetic perception between 6 and 12 months. Dev Sci 9:F13–F21. https://doi.org/10.1111/j.1467-7687.2006.00468.x

    Article  PubMed  Google Scholar 

  23. Lau BK, Lalonde K, Oster M-M, Werner LA (2017) Infant pitch perception: missing fundamental melody discrimination. J Acoust Soc Am 141:65–72. https://doi.org/10.1121/1.4973412

    Article  PubMed  PubMed Central  Google Scholar 

  24. Lau BK, Ruggles DR, Katyal S et al (2017) Sustained cortical and subcortical measures of auditory and visual plasticity following short-term perceptual learning. PLoS ONE 12. https://doi.org/10.1371/journal.pone.0168858

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Lau BK, Werner LA (2012) Perception of missing fundamental pitch by 3- and 4-month-old human infants. J Acoust Soc Am 132:3874–3882. https://doi.org/10.1121/1.4763991

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lau BK, Werner LA (2014) Perception of the pitch of unresolved harmonics by 3- and 7-month-old human infants. J Acoust Soc Am 136:760–767. https://doi.org/10.1121/1.4887464

    Article  PubMed  PubMed Central  Google Scholar 

  27. Madsen SMK, Marschall M, Dau T, Oxenham AJ (2019) Speech perception is similar for musicians and non-musicians across a wide range of conditions. Sci Rep 9:10404. https://doi.org/10.1038/s41598-019-46728-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Mattock K, Molnar M, Polka L, Burnham D (2008) The developmental course of lexical tone perception in the first year of life. Cognition 106:1367–1381. https://doi.org/10.1016/j.cognition.2007.07.002

    Article  PubMed  Google Scholar 

  29. Maxon AB, Hochberg I (1982) Development of psychoacoustic behavior: sensitivity and discrimination. Ear Hear 3:301

    CAS  Article  Google Scholar 

  30. McDermott JH, Lehr AJ, Oxenham AJ (2008) Is relative pitch specific to pitch? Psychol Sci 19:1263–1271. https://doi.org/10.1111/j.1467-9280.2008.02235.x

    Article  PubMed  Google Scholar 

  31. McKay CM (2021) No evidence that music training benefits speech perception in hearing-impaired listeners: a systematic review. Trends in Hearing 25:2331216520985678. https://doi.org/10.1177/2331216520985678

    Article  PubMed  PubMed Central  Google Scholar 

  32. Micheyl C, Delhommeau K, Perrot X, Oxenham AJ (2006) Influence of musical and psychoacoustical training on pitch discrimination. Hear Res 219:36–47. https://doi.org/10.1016/j.heares.2006.05.004

    Article  PubMed  Google Scholar 

  33. Micheyl C, Oxenham AJ (2004) Sequential F0 comparisons between resolved and unresolved harmonics: no evidence for translation noise between two pitch mechanisms. J Acoust Soc Am 116:3038–3050. https://doi.org/10.1121/1.1806825

    Article  PubMed  Google Scholar 

  34. Micheyl C, Ryan CM, Oxenham AJ (2012) Further evidence that fundamental-frequency difference limens measure pitch discrimination. J Acoust Soc Am 131:3989–4001. https://doi.org/10.1121/1.3699253

    Article  PubMed  PubMed Central  Google Scholar 

  35. Montgomery CR, Clarkson MG (1997) Infants’ pitch perception: masking by low- and high-frequency noises. J Acoust Soc Am 102:3665–3672. https://doi.org/10.1121/1.420153

    CAS  Article  PubMed  Google Scholar 

  36. Moore BCJ, Glasberg BR (1990) Frequency discrimination of complex tones with overlapping and non-overlapping harmonics. J Acoust Soc Am 87:2163–2177. https://doi.org/10.1121/1.399184

    CAS  Article  PubMed  Google Scholar 

  37. Moore GA, Moore BCJ (2003) Perception of the low pitch of frequency-shifted complexes. J Acoust Soc Am 113:977–985. https://doi.org/10.1121/1.1536631

    Article  PubMed  Google Scholar 

  38. Moore JK, Guan YL (2001) Cytoarchitectural and axonal maturation in human auditory cortex. J Assoc Res Otolaryngol 2:297–311

    CAS  Article  Google Scholar 

  39. Norman-Haignere S, Kanwisher N, McDermott JH (2013) Cortical pitch regions in humans respond primarily to resolved harmonics and are located in specific tonotopic regions of anterior auditory cortex. J Neurosci 33:19451–19469. https://doi.org/10.1523/JNEUROSCI.2880-13.2013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Olsho LW (1984) Infant frequency discrimination. Infant Behav Dev 7:27–35. https://doi.org/10.1016/S0163-6383(84)80020-X

    Article  Google Scholar 

  41. Oxenham AJ, Micheyl C, Keebler MV et al (2011) Pitch perception beyond the traditional existence region of pitch. PNAS 108:7629–7634. https://doi.org/10.1073/pnas.1015291108

    Article  PubMed  PubMed Central  Google Scholar 

  42. Penagos H, Melcher JR, Oxenham AJ (2004) A neural representation of pitch salience in nonprimary human auditory cortex revealed with functional magnetic resonance imaging. J Neurosci 24:6810–6815. https://doi.org/10.1523/JNEUROSCI.0383-04.2004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Plantinga J, Trainor LJ (2009) Melody recognition by two-month-old infants. J Acoust Soc Am 125:EL58–EL62. https://doi.org/10.1121/1.3049583

  44. Plomp R, Steeneken HJM (1969) Effect of phase on the timbre of complex tones. J Acoust Soc Am 46:409–421. https://doi.org/10.1121/1.1911705

    CAS  Article  PubMed  Google Scholar 

  45. Rosner B (1995) Fundamentals of biostatistics, 4th edn. Duxbury Press, Belmont, CA

    Google Scholar 

  46. Shofner WP, Chaney M (2013) Processing pitch in a nonhuman mammal (Chinchilla laniger). J Comp Psychol 127:142–153. https://doi.org/10.1037/a0029734

    Article  PubMed  Google Scholar 

  47. Song X, Osmanski MS, Guo Y, Wang X (2016) Complex pitch perception mechanisms are shared by humans and a New World monkey. Proc Natl Acad Sci 113:781–786. https://doi.org/10.1073/pnas.1516120113

    CAS  Article  PubMed  Google Scholar 

  48. Stilp CE, Kluender KR (2012) Efficient coding and statistically optimal weighting of covariance among acoustic attributes in novel sounds. PLoS ONE 7:e30845. https://doi.org/10.1371/journal.pone.0030845

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Stilp CE, Rogers TT, Kluender KR (2010) Rapid efficient coding of correlated complex acoustic properties. Proc Natl Acad Sci USA 107:21914–21919. https://doi.org/10.1073/pnas.1009020107

    Article  PubMed  PubMed Central  Google Scholar 

  50. Teller DY (1979) The forced-choice preferential looking procedure: a psychophysical technique for use with human infants. Infant Behav Dev 2:135–153. https://doi.org/10.1016/S0163-6383(79)80016-8

    Article  Google Scholar 

  51. Trainor LJ, Trehub SE (1992) A comparison of infants’ and adults’ sensitivity to Western musical structure. J Exp Psychol Hum Percept Perform 18:394. https://doi.org/10.1037/0096-1523.18.2.394

    CAS  Article  PubMed  Google Scholar 

  52. Trehub SE, Thorpe LA, Morrongiello BA (1985) Infants’ perception of melodies: changes in a single tone. Infant Behav Dev 8:213–223. https://doi.org/10.1016/S0163-6383(85)80007-2

    Article  Google Scholar 

  53. Walker KM, Gonzalez R, Kang JZ, et al (2019) Across-species differences in pitch perception are consistent with differences in cochlear filtering. Elife 8. https://doi.org/10.7554/eLife.41626

  54. Werker JF, Tees RC (1984) Cross-language speech perception: evidence for perceptual reorganization during the first year of life. Infant Behav Dev 7:49–63. https://doi.org/10.1016/S0163-6383(84)80022-3

    Article  Google Scholar 

  55. Werner LA (1995) Observer-based approaches to human infant psychoacoustics. In: Klump GM, Dooling RJ, Fay RR, Stebbins WC (eds) Methods in Comparative Psychoacoustics. Birkhäuser Basel, pp 135–146.

  56. Whalen DH, Levitt AG (1995) The universality of intrinsic F0 of vowels. J Phon 23:349–366. https://doi.org/10.1016/S0095-4470(95)80165-0

    Article  Google Scholar 

  57. Zatorre RJ, Evans AC, Meyer E, Gjedde A (1992) Lateralization of phonetic and pitch discrimination in speech processing. Science 256:846–849. https://doi.org/10.1126/science.256.5058.846

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by NIH grants R01 DC00396 and P30 DC04661 to L.A.W.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bonnie K. Lau.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lau, B.K., Oxenham, A.J. & Werner, L.A. Infant Pitch and Timbre Discrimination in the Presence of Variation in the Other Dimension. JARO (2021). https://doi.org/10.1007/s10162-021-00807-1

Download citation

Keywords

  • cortical maturation
  • auditory development
  • pitch perception
  • timbre perception