Skip to main content
Log in

Rate and Temporal Coding of Regular and Irregular Pulse Trains in Auditory Midbrain of Normal-Hearing and Cochlear-Implanted Rabbits

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Although pitch is closely related to temporal periodicity, stimuli with a degree of temporal irregularity can evoke a pitch sensation in human listeners. However, the neural mechanisms underlying pitch perception for irregular sounds are poorly understood. Here, we recorded responses of single units in the inferior colliculus (IC) of normal hearing (NH) rabbits to acoustic pulse trains with different amounts of random jitter in the inter-pulse intervals and compared with responses to electric pulse trains delivered through a cochlear implant (CI) in a different group of rabbits. In both NH and CI animals, many IC neurons demonstrated tuning of firing rate to the average pulse rate (APR) that was robust against temporal jitter, although jitter tended to increase the firing rates for APRs ≥ 1280 Hz. Strength and limiting frequency of spike synchronization to stimulus pulses were also comparable between periodic and irregular pulse trains, although there was a slight increase in synchronization at high APRs with CI stimulation. There were clear differences between CI and NH animals in both the range of APRs over which firing rate tuning was observed and the prevalence of synchronized responses. These results suggest that the pitches of regular and irregular pulse trains are coded differently by IC neurons depending on the APR, the degree of irregularity, and the mode of stimulation. In particular, the temporal pitch produced by periodic pulse trains lacking spectral cues may be based on a rate code rather than a temporal code at higher APRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Upon request.

Code Availability

Upon request.

References

  • Bahmer A, Baumann U (2014) Psychometric function of jittered rate pitch discrimination. Hear Res 313:47–54

    Article  PubMed  Google Scholar 

  • Bal R, Oertel D (2001) Potassium currents in octopus cells of the mammalian cochlear nucleus. J Neurophysiol 86:2299–2311

    Article  CAS  PubMed  Google Scholar 

  • Barnes-Davies M, Barker MC, Osmani F, Forsythe ID (2004) Kv1 currents mediate a gradient of principal neuron excitability across the tonotopic axis in the rat lateral superior olive. Eur J Neurosci 19:325–333

    Article  PubMed  Google Scholar 

  • Bendor D, Wang X (2010) Neural coding of periodicity in marmoset auditory cortex. J Neurophysiol 103:1809–1822

    Article  PubMed  PubMed Central  Google Scholar 

  • Bendor D, Osmanski MS, Wang X (2012) Dual-pitch processing mechanisms in primate auditory cortex. J Neurosci 32:16149–16161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brew HM, Forsythe ID (1995) Two voltage-dependent K+ conductances with complementary functions in postsynaptic integration at a central auditory synapse. J Neurosci 15:8011–8022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brockmann M, Drinnan MJ, Storck C, Carding PN (2011) Reliable jitter and shimmer measurements in voice clinics: the relevance of vowel, gender, vocal intensity, and fundamental frequency effects in a typical clinical task. J Voice 25:44–53

    Article  PubMed  Google Scholar 

  • Buechel BD, Hancock KE, Chung Y, Delgutte B (2018) Improved neural coding of ITD with bilateral cochlear implants by introducing short inter-pulse intervals. J Assoc Res Otolaryngol 19:681–702

    Article  PubMed  PubMed Central  Google Scholar 

  • Burkard R, Palmer AR (1997) Responses of chopper units in the ventral cochlear nucleus of the anaesthetised guinea pig to clicks-in-noise and click trains. Hear Res 110:234–250

    Article  CAS  PubMed  Google Scholar 

  • Cao XJ, Shatadal S, Oertel D (2007) Voltage-sensitive conductances of bushy cells of the mammalian ventral cochlear nucleus. J Neurophysiol 97:3961–3975

    Article  PubMed  Google Scholar 

  • Carlyon RP, Deeks JM (2002) Limitations on rate discrimination. J Acoust Soc Am 112:1009–1025

    Article  PubMed  Google Scholar 

  • Chen H, Ishihara YC, Zeng FG (2005) Pitch discrimination of patterned electric stimulation. J Acoust Soc Am 118:338–345

    Article  PubMed  Google Scholar 

  • Chung Y, Hancock KE, Delgutte B (2016) Neural coding of interaural time differences with bilateral cochlear implants in unanesthetized rabbits. J Neurosci 36:5520–5531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung Y, Hancock KE, Nam SI, Delgutte B (2014) Coding of electric pulse trains presented through cochlear implants in the auditory midbrain of awake rabbit: comparison with anesthetized preparations. J Neurosci 34:218–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung Y, Buechel BD, Sunwoo W, Wagner JD, Delgutte B (2019) Neural ITD sensitivity and temporal coding with cochlear implants in an animal model of early-onset deafness. J Assoc Res Otolaryngol 20:37–56

    Article  PubMed  PubMed Central  Google Scholar 

  • Dobie RA, Dillier N (1985) Some aspects of temporal coding for single-channel electrical stimulation of the cochlea. Hear Res 18:41–55

    Article  CAS  PubMed  Google Scholar 

  • Dynes SB, Delgutte B (1992) Phase-locking of auditory-nerve discharges to sinusoidal electric stimulation of the cochlea. Hear Res 58:79–90

    Article  CAS  PubMed  Google Scholar 

  • Flanagan JL, Guttman N (1960) On the pitch of periodic pulses. J Acoust Soc Am 32:1308–1319

    Article  Google Scholar 

  • Gaudrain E, Deeks JM, Carlyon RP (2017) Temporal regularity detection and rate discrimination in cochlear-implant listeners. J Assoc Res Otolaryngol 18:387–397

    Article  PubMed  Google Scholar 

  • Goldberg JM, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32:613–636

    Article  CAS  PubMed  Google Scholar 

  • Goupell M, Hancock K, Majdak P, Laback B, Delgutte B (2010) Binaurally-coherent jitter improves neural and perceptual ITD sensitivity in normal and electric hearing. In: The Neurophysiological Bases of Auditory Perception, pp 303–313: Springer

  • Hancock KE, Chung Y, Delgutte B (2012) Neural ITD coding with bilateral cochlear implants: effect of binaurally coherent jitter. J Neurophysiol 108:714–728

    Article  PubMed  PubMed Central  Google Scholar 

  • Hancock KE, Noel V, Ryugo DK, Delgutte B (2010) Neural coding of interaural time differences with bilateral cochlear implants: effects of congenital deafness. J Neurosci 30:14068–14079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartmann R, Topp G, Klinke R (1984) Discharge patterns of cat primary auditory fibers with electrical stimulation of the cochlea. Hear Res 13:47–62

    Article  CAS  PubMed  Google Scholar 

  • Houtsma AJ, Smurzynski J (1990) Pitch identification and discrimination for complex tones with many harmonics. J Acoust Soc Am 87:304–310

    Article  Google Scholar 

  • Javel E, Shepherd RK (2000) Electrical stimulation of the auditory nerve. III. Response initiation sites and temporal fine structure. Hear Res 140:45–76

    Article  CAS  PubMed  Google Scholar 

  • Joris PX, Louage DH, Cardoen L, van der Heijden M (2006) Correlation index: a new metric to quantify temporal coding. Hear Res 216–217:19–30

    Article  PubMed  Google Scholar 

  • Kiang NY, Moxon EC (1972) Physiological considerations in artificial stimulation of the inner ear. Ann Otol Rhinol Laryngol 81:714–730

    Article  CAS  PubMed  Google Scholar 

  • Kim DO, Carney L, Kuwada S (2020) Amplitude modulation transfer functions reveal opposing populations within both the inferior colliculus and medial geniculate body. J Neurophysiol 124:1198–1215

    Article  PubMed  Google Scholar 

  • Kong YY, Carlyon RP (2010) Temporal pitch perception at high rates in cochlear implants. J Acoust Soc Am 127:3114–3123

    Article  PubMed  Google Scholar 

  • Krumbholz K, Patterson RD, Pressnitzer D (2000) The lower limit of pitch as determined by rate discrimination. J Acoust Soc Am 108:1170–1180

    Article  CAS  PubMed  Google Scholar 

  • Laback B, Majdak P (2008) Binaural jitter improves interaural time-difference sensitivity of cochlear implantees at high pulse rates. Proc Natl Acad Sci USA 105:814–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laback B, Egger K, Majdak P (2015) Perception and coding of interaural time differences with bilateral cochlear implants. Hear Res 322:138–150

    Article  PubMed  Google Scholar 

  • Licklider JC (1951) A duplex theory of pitch perception. Experientia 7:128–134

    Article  CAS  PubMed  Google Scholar 

  • Lieberman P (1963) Some acoustic measures of the fundamental periodicity of normal and pathologic larynges. J Acoust Soc Am 35:344–353

    Article  Google Scholar 

  • Manis PB, Marx SO (1991) Outward currents in isolated ventral cochlear nucleus neurons. J Neurosci 11:2865–2880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mathews PJ, Jercog PE, Rinzel J, Scott LL, Golding NL (2010) Control of submillisecond synaptic timing in binaural coincidence detectors by K(v)1 channels. Nat Neurosci 13:601–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehta AH, Oxenham AJ (2017) Vocoder simulations explain complex pitch perception limitations experienced by cochlear implant users. J Assoc Res Otolaryngol 18:789–802

    Article  PubMed  PubMed Central  Google Scholar 

  • Miller CA, Hu N, Zhang F, Robinson BK, Abbas PJ (2008) Changes across time in the temporal responses of auditory nerve fibers stimulated by electric pulse trains. J Assoc Res Otolaryngol 9:122–137

    Article  PubMed  PubMed Central  Google Scholar 

  • Mo ZL, Adamson CL, Davis RL. (2002) Dendrotoxin-sensitive K currents contribute to accommodation in murine spiral ganglion neurons. J Physiol 542:763–778.

  • Nelson PC, Carney LH (2004) A phenomenological model of peripheral and central neural responses to amplitude-modulated tones. J Acoust Soc Am 116:2173–2186

    Article  PubMed  PubMed Central  Google Scholar 

  • Phillips DP, Dingle RN, Hall SE, Jang M (2012) Dual mechanisms in the perceptual processing of click train temporal regularity. J Acoust Soc Am 132:EL22–28

  • Pichora-Fuller MK, Schneider BA, Macdonald E, Pass HE, Brown S (2007) Temporal jitter disrupts speech intelligibility: a simulation of auditory aging. Hear Res 223:114–121

    Article  PubMed  Google Scholar 

  • Pollack I (1968a) Detection and relative discrimination of auditory “jitter.” J Acoust Soc Am 43:308–315

    Article  CAS  PubMed  Google Scholar 

  • Pollack I (1968b) Discrimination of mean temporal interval within jittered auditory pulse trains. J Acoust Soc Am 43:1107–1112

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg AE (1966) Pitch discrimination of jittered pulse trains. J Acoust Soc Am 39:920–928

    Article  CAS  PubMed  Google Scholar 

  • Rosenberger MH, Fremouw T, Casseday JH, Covey E (2003) Expression of the Kv1.1 ion channel subunit in the auditory brainstem of the big brown bat. Eptesicus fuscus J Comp Neurol 462:101–120

    Article  CAS  PubMed  Google Scholar 

  • Rothman JS, Manis PB (2003) Differential expression of three distinct potassium currents in the ventral cochlear nucleus. J Neurophysiol 89:3070–3082

    Article  CAS  PubMed  Google Scholar 

  • Schnupp JW, Garcia-Lazaro JA, Lesica NA (2015) Periodotopy in the gerbil inferior colliculus: local clustering rather than a gradient map. Front Neural Circuits 9:37

    Article  PubMed  PubMed Central  Google Scholar 

  • Shofner WP, Chaney M (2013) Processing pitch in a nonhuman mammal (Chinchilla lanigera). J Comp Psychol 127:142–153

    Article  PubMed  Google Scholar 

  • Sivaramakrishnan S, Oliver DL (2001) Distinct K currents result in physiologically distinct cell types in the inferior colliculus of the rat. J Neurosci 21:2861–2877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith PH (1995) Structural and functional differences distinguish principal from nonprincipal cells in the guinea pig MSO slice. J Neurophysiol 73:1653–1667

    Article  CAS  PubMed  Google Scholar 

  • Su Y, Delgutte B (2019) Pitch of harmonic complex tones: rate and temporal coding of envelope repetition rate in inferior colliculus of unanesthetized rabbits. J Neurophysiol 122:2468–2485

    Article  PubMed  PubMed Central  Google Scholar 

  • Su Y, Delgutte B (2020) Robust rate-place coding of resolved components in harmonic and inharmonic complex tones in auditory midbrain. J Neurosci 40:2080–2093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svirskis G, Kotak V, Sanes DH, Rinzel J (2002) Enhancement of signal-to-noise ratio and phase locking for small inputs by a low-threshold outward current in auditory neurons. J Neurosci 22:11019–11025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong YC, Clark GM (1985) Absolute identification of electric pulse rates and electrode positions by cochlear implant patients. J Acoust Soc Am 77:1881–1888

    Article  CAS  PubMed  Google Scholar 

  • Townshend B, Cotter N, Van Compernolle D, White RL (1987) Pitch perception by cochlear implant subjects. J Acoust Soc Am 82:106–115

    Article  CAS  PubMed  Google Scholar 

  • Tsuzaki M, Patterson RD (1998) Jitter detection: a brief review and some new experiments. In: A.R. P, Summerfield AQ, Meddis R, (ed) Psychophysical and physiological advances in hearing. Whurr, London, pp 546–553

    Google Scholar 

  • van den Honert C, Stypulkowski PH (1987) Temporal response patterns of single auditory nerve fibers elicited by periodic electrical stimuli. Hear Res 29:207–222

    Article  PubMed  Google Scholar 

  • Yost WA (1996) Pitch strength of iterated rippled noise. J Acoust Soc Am 100:3329–3335

    Article  CAS  PubMed  Google Scholar 

  • Yost WA, Patterson R, Sheft S (1996) A time domain description for the pitch strength of iterated rippled noise. J Acoust Soc Am 99:1066–1078

    Article  CAS  PubMed  Google Scholar 

  • Yost WA, Mapes-Riordan D, Shofner W, Dye R, Sheft S (2005) Pitch strength of regular-interval click trains with different length “runs” of regular intervals. J Acoust Soc Am 117:3054–3068

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeng FG (2002) Temporal pitch in electric hearing. Hear Res 174:101–106

    Article  PubMed  Google Scholar 

  • Zheng Y, Escabi MA (2008) Distinct roles for onset and sustained activity in the neuronal code for temporal periodicity and acoustic envelope shape. J Neurosci 28:14230–14244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Escabi MA (2013) Proportional spike-timing precision and firing reliability underlie efficient temporal processing of periodicity and envelope shape cues. J Neurophysiol 110:587–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Connie Miller, Melissa McKinnon, Camille Shaw, Alice Gelman, and Joseph Wagner for surgical assistance and Cochlear Ltd. for providing the cochlear implants.

Funding

This work was supported by National Institutes of Health grants R01 DC002258 and R01 DC005775 to BD.

Author information

Authors and Affiliations

Authors

Contributions

BD, YS, and YC designed the study. YS, YC, DG, and KH collected the data. BD, YS, YC, and KH analyzed the data. BD and YS wrote the manuscript. BD, YS, YC, DG, and KH edited the manuscript and approved the final version.

Corresponding authors

Correspondence to Yaqing Su or Bertrand Delgutte.

Ethics declarations

Ethics Approval

Animal procedures were approved by the Animal Care Committee of Massachusetts Eye and Ear.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Y., Chung, Y., Goodman, D.F.M. et al. Rate and Temporal Coding of Regular and Irregular Pulse Trains in Auditory Midbrain of Normal-Hearing and Cochlear-Implanted Rabbits. JARO 22, 319–347 (2021). https://doi.org/10.1007/s10162-021-00792-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-021-00792-5

Keywords

Navigation