Skip to main content

Correlating Cochlear Morphometrics from Parnell’s Mustached Bat (Pteronotus parnellii) with Hearing

Abstract

Morphometric analysis of the inner ear of mammals can provide information for cochlear frequency mapping, a species-specific designation of locations in the cochlea at which different sound frequencies are encoded. Morphometric variation occurs in the hair cells of the organ of Corti along the cochlea, with the base encoding the highest frequency sounds and the apex encoding the lowest frequencies. Changes in cell shape and spacing can yield additional information about the biophysical basis of cochlear tuning mechanisms. Here, we investigate how morphometric analysis of hair cells in mammals can be used to predict the relationship between frequency and cochlear location. We used linear and geometric morphometrics to analyze scanning electron micrographs of the hair cells of the cochleae in Parnell’s mustached bat (Pteronotus parnellii) and Wistar rat (Rattus norvegicus) and determined a relationship between cochlear morphometrics and their frequency map. Sixteen of twenty-two of the morphometric parameters analyzed showed a significant change along the cochlea, including the distance between the rows of hair cells, outer hair cell width, and gap width between hair cells. A multiple linear regression model revealed that nine of these parameters are responsible for 86.9 % of the variation in these morphometric data. Determining the most biologically relevant measurements related to frequency detection can give us a greater understanding of the essential biomechanical characteristics for frequency selectivity during sound transduction in a diversity of animals.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Adams DC, Collyer ML, Kaliontzopoulou A (2018) Geomorph: software for geometric morphometric analyses. R package version 3.0.6

  2. Barton K (2019) Multi-modal inference - R Package ‘MuMIn.’ R Packag. version 1

  3. Bruns V (1976) Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum - I Mechanical specializations of the cochlea. J Comp Physiol A 106:77–86. https://doi.org/10.1007/BF00606573

    Article  Google Scholar 

  4. Burnhan KP, Anderson DR (2002) Model selection and multimodel inference. Springer, New York

    Google Scholar 

  5. Ciganović N, Wolde-Kidan A, Reichenbach T (2017) Hair bundles of cochlear outer hair cells are shaped to minimize their fluid-dynamic resistance. Sci Rep 7:1–9. https://doi.org/10.1038/s41598-017-03773-y

    CAS  Article  Google Scholar 

  6. Dallos P (1992) The active cochlea. J Neurosci 12:4575–4585

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Dannhof BJ, Bruns V (1991) The organ of Corti in the bat Hipposideros bicolor. Hear Res 53:253–268

    CAS  PubMed  Google Scholar 

  8. Dannhof BJ, Roth B, Bruns V (1991) Length of hair cells as a measure of frequency representation in the mammalian inner ear? Naturwissenschaften 78:570–573. https://doi.org/10.1007/BF01134454

    CAS  Article  PubMed  Google Scholar 

  9. Echteler SM, Fay RR, Popper AN (1994) Structure of the mammalian cochlea. In: Fay RR, Popper AN (eds) Comparative hearing: mammals. Springer, New York, pp 134–171

    Google Scholar 

  10. Edge RM, Evans BN, Pearce M, Richter CP, Hu X, Dallos P (1998) Morphology of the unfixed cochlea. Hear Res 124:1–16

    CAS  PubMed  Google Scholar 

  11. El Naqa I, Murphy MJ (2015) What is machine learning? In: El Naqa I, Li R, Murphy MJ (eds) Machine learning in radiation oncology: theory and applications. Springer International Publishing, Cham, pp 3–11

    Chapter  Google Scholar 

  12. Fettiplace R, Kim KX (2014) The physiology of mechanoelectrical transduction channels in hearing. Physiol Rev 94:951–986. https://doi.org/10.1152/physrev.00038.2013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Guinan JJ (2012) How are inner hair cells stimulated ? Evidence for multiple mechanical drives. Hear Res 292:35–50. https://doi.org/10.1016/j.heares.2012.08.005

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jolliffe IT (2002) Principal component analysis, Springer series in statistics, 2nd edn. Springer-Verlag, New York

  15. Klingenberg CP (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol Ecol Resour 11:353–357. https://doi.org/10.1111/j.1755-0998.2010.02924.x

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kössl M (1994a) Evidence for a mechanical filter in the cochlea of the “constant frequency” bats, Rhinolophus rouxi and Pteronotus parnellii. Hear Res 72:73–80. https://doi.org/10.1016/0378-5955(94)90207-0

    Article  PubMed  Google Scholar 

  17. Kössl M (1994b) Otoacoustic emissions from the cochlea of the ‘constant frequency’ bats, Pteronotus parnellii and Rhinolophus rouxi. Hear Res 72:59–72. https://doi.org/10.1016/0378-5955(94)90206-2

    Article  PubMed  Google Scholar 

  18. Kössl M, Vater M (1985) The cochlear frequency map of the mustache bat, Pteronotus parnellii. J Comp Physiol A 157:687–697. https://doi.org/10.1007/BF01351362

    Article  PubMed  Google Scholar 

  19. Kössl M, Vater M (1990a) Tonotopic organization of the cochlear nucleus of the mustache bat, Pteronotus parnellii. J Comp Physiol A 166:695–709. https://doi.org/10.1007/BF00240019

    Article  Google Scholar 

  20. Kössl M, Vater M (1990b) Resonance phenomena in the cochlea of the mustache bat and their contribution to neuronal response characteristics in the cochlear nucleus. J Comp Physiol A 166:711–720. https://doi.org/10.1007/BF00240020

    Article  Google Scholar 

  21. Kössl M, Vater M (1996) Further studies on the mechanics of the cochlear partition in the mustached bat. II. A second cochlear frequency map derived from acoustic distortion products. Hear Res 94:78–86. https://doi.org/10.1016/0378-5955(96)00006-8

    Article  PubMed  Google Scholar 

  22. Lim DJ (1986) Functional structure of the organ of Corti: a review. Hear Res 22:117–146. https://doi.org/10.1016/0378-5955(86)90089-4

    CAS  Article  PubMed  Google Scholar 

  23. Lim KM, Steele CR (2002) A three-dimensional nonlinear active cochlear model analyzed by the WKB-numeric method. Hear Res 170:190–205. https://doi.org/10.1016/S0378-5955(02)00491-4

    Article  PubMed  Google Scholar 

  24. Morell M, Lenoir M, Shadwick RE, Jauniaux T, Dabin W, Begeman L, Ferreira M, Maestre I, Degollada E, Hernandez-Milian G, Cazevieille C, Fortuño JM, Vogl W, Puel JL, André M (2015) Ultrastructure of the Odontocete organ of Corti: scanning and transmission electron microscopy. J Comp Neurol 523:431–448. https://doi.org/10.1002/cne.23688

    Article  PubMed  Google Scholar 

  25. Morell M, Brownlow A, McGovern B, Raverty SA, Shadwick RE, André M (2017) Implementation of a method to visualize noise-induced hearing loss in mass stranded cetaceans. Sci Rep 7:41848. https://doi.org/10.1038/srep41848

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Müller M (1991) Frequency representation in the rat cochlea. Hear Res 51:247–254

    PubMed  Google Scholar 

  27. Müller M, Von Hünerbein K, Hoidis S, Smolders JWT (2005) A physiological place-frequency map of the cochlea in the CBA/J mouse. Hear Res 202:63–73. https://doi.org/10.1016/j.heares.2004.08.011

    Article  PubMed  Google Scholar 

  28. Ni G, Elliott SJ, Baumgart J (2016) Finite-element model of the active organ of Corti. J R Soc Interface 13:20150913. https://doi.org/10.1098/rsif.2015.0913

    Article  PubMed  PubMed Central  Google Scholar 

  29. Pau HW, Pau H (2006) Does the geometrical arrangement of the outer hair cell stereocilia perform a fluid-mechanical function? Acta Otolaryngol 126:570–576. https://doi.org/10.1080/00016480500468992

    Article  PubMed  Google Scholar 

  30. Pujol R, Lenoir M, Ladrech S et al (1992) Correlation between the length of outer hair cells and the frequency coding of the cochlea. In: Horner K, Demany L (eds) Cazals Y. Pergamon, Auditory Physiology and Perception, pp 45–52

    Google Scholar 

  31. R Core Team (2018) R: A language and environment for statistical computing

  32. Raphael Y, Altschuler RA (2003) Structure and innervation of the cochlea. Brain Res Bull 60:397–422. https://doi.org/10.1016/S0361-9230(03)00047-9

    Article  PubMed  Google Scholar 

  33. Rhode WS, Recio A (2000) Study of mechanical motions in the basal region of the chinchilla cochlea. J Acoust Soc Am 107:3317–3332. https://doi.org/10.1121/1.429404

    CAS  Article  PubMed  Google Scholar 

  34. Rohlf FJ (2004a) TPSUtil, Version 1.70

  35. Rohlf FJ (2004b) TPSDig2, Version 2.26

  36. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Schweitzer L, Lutz C, Hobbs M, Weaver SP (1996) Anatomical correlates of the passive properties underlying the developmental shift in the frequency map of the mammalian cochlea. Hear Res 97:84–94

    CAS  Article  Google Scholar 

  38. Spicer SS, Schulte BA (1994) Differences along the place-frequency map in the structure of supporting cells in the gerbil cochlea. Hear Res 79:161–177

    CAS  Article  Google Scholar 

  39. Strelioff D, Flock Å, Minser KE (1985) Role of inner and outer hair cells in mechanical frequency selectivity of the cochlea. Hear Res 18:169–175

    CAS  Article  Google Scholar 

  40. Vater M, Kössl M (1996) Further studies on the mechanics of the cochlear partition in the mustached bat. I. Ultrastructural observations on the tectorial membrane and its attachments. Hear Res 94:63–77. https://doi.org/10.1016/0378-5955(96)00005-6

    CAS  Article  PubMed  Google Scholar 

  41. Vater M, Kössl M (2011) Comparative aspects of cochlear functional organization in mammals. Hear Res 273:89–99. https://doi.org/10.1016/j.heares.2010.05.018

    Article  PubMed  Google Scholar 

  42. Vater M, Lenoir M (1992) Ultrastructure of the horseshoe bat’s organ of Corti I Scanning electron microscopy. J Comp Neurol 318:367–379

    CAS  PubMed  Google Scholar 

  43. Vater M, Siefer W (1995) The cochlea of Tadarida brasiliensis: specialized functional organization in a generalized bat. Hear Res 91:178–195. https://doi.org/10.1016/0378-5955(95)00188-3

    CAS  Article  PubMed  Google Scholar 

  44. Von Békésy G (1960) Experiments in hearing. McGraw-Hill

  45. Wright A (1984) Dimensions of the cochlear stereocilia in man and the guinea pig. Hear Res 13:89–98

    CAS  PubMed  Google Scholar 

  46. Yao Q, Zeng JY, Zheng YM, Julia L, Liang B, Jiang L, Zhang SY (2007) Characteristics of echolocating bats’ auditory stereocilia length, compared with other mammals. Sci China Ser C Life Sci 50:492–496. https://doi.org/10.1007/s11427-007-0055-8

    Article  Google Scholar 

  47. Yarin YM, Lukashkin AN, Poznyakovskiy AA, Meißner H, Fleischer M, Baumgart J, Richter C, Kuhlisch E, Zahnert T (2014) Tonotopic morphometry of the lamina reticularis of the guinea pig cochlea with associated microstructures and related mechanical implications. JARO - J Assoc Res Otolaryngol 15:1–11. https://doi.org/10.1007/s10162-013-0420-1

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Christina Harvey for help with R and geomorph, and Vikram Baliga for helping with the geomorph coding that he and C.H. developed. We also thank Derrick Horne (UBC Bioimaging Facility) and Dr. Chantal Cazevieille (COMET) for technical assistance and Dr. Marc Lenoir (Institute for Neurosciences of Montpellier) for dissecting and processing the rat cochleae.

Funding

Funding for the research described herein was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) (RGPIN 312039-13 and RGPAS 446012-13 to R.E.S.) and the Department of Zoology at the University of British Columbia. The research leading to these results has also received funding from the Marie Skłodowska-Curie Individual Post-doctoral Fellowship 751284-H2020-MSCA-IF-2016 to M.M.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Cassandra D. Girdlestone.

Ethics declarations

All experiments described herein regarding the bats, were carried out in accordance with current laws for animal experimentation in Germany (Regierungspräsidium Darmstadt) and according to the Declaration of Helsinki. Experiments on the rats were carried out in accordance with the animal welfare guidelines of the Institut National de la Santé et de laRecherche Médicale and approved by the French Ministère de l’Agriculture et de la Forêt.

Competing Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Girdlestone, C.D., Ng, J., Kössl, M. et al. Correlating Cochlear Morphometrics from Parnell’s Mustached Bat (Pteronotus parnellii) with Hearing. JARO 21, 425–444 (2020). https://doi.org/10.1007/s10162-020-00764-1

Download citation

Keywords

  • inner ear
  • organ of Corti
  • geometric morphometrics
  • linear morphometrics
  • frequency map