Reciprocal Matched Filtering in the Inner Ear of the African Clawed Frog (Xenopus laevis)

Abstract

Anurans (frogs and toads) are the most vocal amphibians. In most species, only males produce advertisement calls for defending territories and attracting mates. Female vocalizations are the exceptions among frogs, however in the African clawed frog (Xenopus laevis) both males and females produce distinct vocalizations. The matched filter hypothesis predicts a correspondence between peripheral auditory tuning of receivers and properties of species-specific acoustic signals, but few studies have assessed this relationship between the sexes. Measuring hearing sensitivity with a binaural recording of distortion product otoacoustic emissions, we have found that the ears of the males of this species are tuned to the dominant frequency of the female’s calls, whereas the ears of the females are tuned close to the dominant frequency of the male’s calls. Our findings provide support for the matched filter hypothesis extended to include male-female calling. This unique example of reciprocal matched filtering ensures that males and females communicate effectively in high levels of background noise, each sex being most sensitive to the frequencies of the other sex’s calls.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Bailey WJ, Römer H (1991) Sexual differences in auditory sensitivity: mismatch of hearing threshold and call frequency in a tettigoniid (Orthoptera, Tettigoniidae: Zaprochilinae). J Comp Physiol A 169:349–353. https://doi.org/10.1007/bf00206999

    Article  Google Scholar 

  2. Bogert C (1960) The influence of sound on the behavior of amphibians and reptiles. In: Lanyon W, Tavolga W (eds) Animal sounds and communication. American Institute of Biological Sciences, Washington, DC, pp 137–320

    Google Scholar 

  3. Capranica RR, Moffat AJM (1983) Neurobehavioral correlates of sound communication in anurans. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in Vertebrate Neuroethology. Springer US, Boston, pp 701–730. https://doi.org/10.1007/978-1-4684-4412-4_36

    Chapter  Google Scholar 

  4. Christensen-Dalsgaard J, Elepfandt A (1995) Biophysics of underwater hearing in the clawed frog, Xenopus laevis. J Comp Physiol A 176:317–324. https://doi.org/10.1007/BF00219057

    CAS  Article  PubMed  Google Scholar 

  5. Elepfandt A, Eistetter I, Fleig A, Gunther E, Hainich M, Hepperle S, Traub B (2000) Hearing threshold and frequency discrimination in the purely aquatic frog Xenopus laevis (Pipidae): measurement by means of conditioning. J Exp Biol 203:3621–3629

    CAS  PubMed  Google Scholar 

  6. Elliott TM, Kelley DB (2007) Male discrimination of receptive and unreceptive female calls by temporal features. J Exp Biol 210:2836–2842. https://doi.org/10.1242/jeb.003988

    Article  PubMed  PubMed Central  Google Scholar 

  7. Elliott TM, Christensen-Dalsgaard J, Kelley DB (2007) Tone and call responses of units in the auditory nerve and dorsal medullary nucleus of Xenopus laevis. J Comp Physiol A 193:1243–1257. https://doi.org/10.1007/s00359-007-0285-z

    Article  Google Scholar 

  8. Elliott TM, Christensen-Dalsgaard J, Kelley DB (2011) Temporally selective processing of communication signals by auditory midbrain neurons. J Neurophysiol 105:1620–1632. https://doi.org/10.1152/jn.00261.2009

    Article  PubMed  PubMed Central  Google Scholar 

  9. Emerson SB (1992) Courtship and nest-building behavior of a Bornean frog, Rana blythi. Copeia 1992:1123–1127. https://doi.org/10.2307/1446654

    Article  Google Scholar 

  10. Gerhardt HC, Schwartz JJ (2001) Auditory tuning and frequency preferences in anurans. In: Ryan MJ (ed) Anuran communication. Smithsonian Inst. Press, Washington, pp 73–85

    Google Scholar 

  11. Given MF (1987) Vocalizations and acoustic interactions of the carpenter frog, Rana virgatipes. Herpetologica 43:467–481

    Google Scholar 

  12. Hall IC, Woolley SM, Kwong-Brown U, Kelley DB (2016) Sex differences and endocrine regulation of auditory-evoked, neural responses in African clawed frogs (Xenopus). J Comp Physiol A 202:17–34. https://doi.org/10.1007/s00359-015-1049-9

    CAS  Article  Google Scholar 

  13. Hoy RR, Robert D (1996) Tympanal hearing in insects. Annu Rev Entomol 41:433–450. https://doi.org/10.1146/annurev.en.41.010196.002245

    CAS  Article  PubMed  Google Scholar 

  14. Kelley D, Tobias M (1999) The vocal repertoire of Xenopus laevis. In: Hauser M, Konishi M (eds) The design of animal communication. MIT Press, Cambridge, pp 9–35

    Google Scholar 

  15. Kemp DT (1979) Evidence of mechanical nonlinearity and frequency selective wave amplification in the cochlea. Arch Otorhinolaryngol 224:37–45. https://doi.org/10.1007/BF00455222

    CAS  Article  PubMed  Google Scholar 

  16. Littlejohn MJ (1977) Long-range acoustic communication in anurans: an integrated and evolutionary approach. In: Taylor DH, Guttman SI (eds) The reproductive biology of amphibians. Springer US, Boston, pp 263–294. https://doi.org/10.1007/978-1-4757-6781-0_8

    Chapter  Google Scholar 

  17. Loftus-Hills JJ, Johnstone BM (1970) Auditory function, communication, and the brain-evoked response in anuran amphibians. J Acoust Soc Am 47:1131–1138. https://doi.org/10.1121/1.1912015

    CAS  Article  PubMed  Google Scholar 

  18. Manley GA, Van Dijk P (2008) Otoacoustic emissions in amphibians, lepidosaurs, and archosaurs. In: Manley GA, Fay RR, Popper AN (eds) Active processes and otoacoustic emissions in hearing. Springer Handbook of Auditory Research, vol 30. Springer, New York, NY, pp 211–260.

  19. Marquez R, Verrell P (1991) The courtship and mating of the Iberian midwife toad Alytes cisternasii (Amphibia: Anura: Discoglossidae). J Zool 225:125–139

    Article  Google Scholar 

  20. Mason MJ, Wang M, Narins PM (2009) Structure and function of the middle ear apparatus of the aquatic frog, Xenopus laevis. Proc Inst Acoust 31:13–21

    PubMed  PubMed Central  Google Scholar 

  21. Meenderink SWF, Van Dijk P (2004) Level dependence of distortion product otoacoustic emissions in the leopard frog, Rana pipiens pipiens. Hear Res 192:107–118. https://doi.org/10.1016/j.heares.2004.01.015

    Article  PubMed  Google Scholar 

  22. Meenderink SWF, Van Dijk P (2005) Characteristics of distortion product otoacoustic emissions in the frog from L1,L2 maps. J Acoust Soc Am 118:279–286. https://doi.org/10.1121/1.1925887

    Article  PubMed  Google Scholar 

  23. Meenderink SWF, Van Dijk P, Narins PM (2005) Comparison between distortion product otoacoustic emissions and nerve fiber responses from the basilar papilla of the frog. J Acoust Soc Am 117:3165–3173. https://doi.org/10.1121/1.1871752

    Article  PubMed  Google Scholar 

  24. Meenderink SWF, Kits M, Narins PM (2010) Frequency matching of vocalizations to inner-ear sensitivity along an altitudinal gradient in the coqui frog. Biol Lett 6:278–281. https://doi.org/10.1098/rsbl.2009.0763

    Article  PubMed  Google Scholar 

  25. Narins PM (1987) Coding of signals in noise by amphibian auditory nerve fibers. Hear Res 26:145–154. https://doi.org/10.1016/0378-5955(87)90106-7

    CAS  Article  PubMed  Google Scholar 

  26. Narins PM, Capranica RR (1976) Sexual differences in the auditory system of the tree frog Eleutherodactylus coqui. Science 192:378–380. https://doi.org/10.1126/science.1257772

    CAS  Article  PubMed  Google Scholar 

  27. Narins PM, Clark GA (2016) Principles of matched filtering with auditory examples from selected vertebrates. In: von der Emde G, Warrant E (eds) The ecology of animal senses: matched filters for economical sensing. Springer International Publishing, Cham, pp 111–140. https://doi.org/10.1007/978-3-319-25492-0_5

    Chapter  Google Scholar 

  28. Probst R, Lonsburymartin BL, Martin GK (1991) A review of Otoacoustic emissions. J Acoust Soc Am 89:2027–2067. https://doi.org/10.1121/1.400897

    CAS  Article  PubMed  Google Scholar 

  29. Ryan MJ, Keddy-Hector A (1992) Directional patterns of female mate choice and the role of sensory biases. 139:S4–S35. https://doi.org/10.1086/285303

    Article  Google Scholar 

  30. Schrode KM, Buerkle NP, Brittan-Powell EF, Bee MA (2014) Auditory brainstem responses in Cope's gray treefrog (Hyla chrysoscelis): effects of frequency, level, sex and size. J Comp Physiol A 200:221–238. https://doi.org/10.1007/s00359-014-0880-8

    Article  Google Scholar 

  31. Shen J-X, Feng AS, Xu Z-M, Yu Z-L, Arch VS, Yu X-J, Narins PM (2008) Ultrasonic frogs show hyperacute phonotaxis to female courtship calls. Nature 453:914–916. https://doi.org/10.1038/nature06719

    CAS  Article  PubMed  Google Scholar 

  32. Shen J-X, Xu Z-M, Yu Z-L, Wang S, Zheng D-Z, Fan S-C (2011) Ultrasonic frogs show extraordinary sex differences in auditory frequency sensitivity. Nat Commun 2:342. https://doi.org/10.1038/ncomms1339

    CAS  Article  PubMed  Google Scholar 

  33. Shera CA, Abdala C (2012) Otoacoustic emissions: mechanisms and applications. In: Tremblay K, Burkard R (eds) Translational perspectives in auditory Neurocience: hearing across the life span-assessment and disorders. Plural Publishing, pp 123–159

  34. Tobias ML, Viswanathan SS, Kelley DB (1998) Rapping, a female receptive call, initiates male-female duets in the south African clawed frog. Proc Natl Acad Sci U S A 95:1870–1875. https://doi.org/10.1073/pnas.95.4.1870

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Tobias ML, Barnard C, O'Hagan R, Horng SH, Rand M, Kelley DB (2004) Vocal communication between male Xenopus laevis. Anim Behav 67:353–365. https://doi.org/10.1016/j.anbehav.2003.03.016

    Article  PubMed  Google Scholar 

  36. Van Dijk P, Manley GA (2001) Distortion product otoacoustic emissions in the tree frog Hyla cinerea. Hear Res 153:14–22. https://doi.org/10.1016/S0378-5955(00)00251-3

    Article  PubMed  Google Scholar 

  37. Van Dijk P, Mason MJ, Narins PM (2002) Distortion product otoacoustic emissions in frogs: correlation with middle and inner ear properties. Hear Res 173:100–108. https://doi.org/10.1016/S0378-5955(02)00605-6

    Article  PubMed  Google Scholar 

  38. Van Dijk P, Narins PM, Mason MJ (2003) Physiological vulnerability of distortion product otoacoustic emissions from the amphibian ear. J Acoust Soc Am 114:2044–2048. https://doi.org/10.1121/1.1608957

    Article  PubMed  Google Scholar 

  39. Vassilakis PN, Meenderink SWF, Narins PM (2004) Distortion product otoacoustic emissions provide clues hearing mechanisms in the frog ear. J Acoust Soc Am 116:3713–3726. https://doi.org/10.1121/1.1811571

    Article  PubMed  Google Scholar 

  40. Vignal C, Kelley DB (2007) Significance of temporal and spectral acoustic cues for sexual recognition in Xenopus laevis. 274:479–488. https://doi.org/10.1098/rspb.2006.3744

    Article  Google Scholar 

  41. Wang Y, Cui J, Yu X, Tang Y (2010) Male phonotropism and answer calls elicited by female vocalizations in the African clawed frog, Xenopus laevis. J Herpetol 44:475–479. https://doi.org/10.1670/09-055.1

    CAS  Article  Google Scholar 

  42. Wehner R (1987) ‘Matched filters’—neural models of the external world. J Comp Physiol A 161:511–531. https://doi.org/10.1007/BF00603659

    Article  Google Scholar 

  43. Wells KD (2007) The ecology and behavior of amphibians. The University of Chicago Press, Chicago

    Book  Google Scholar 

  44. Wever EG (1985) The amphibian ear vol 45. Princeton University Press, Princeton

    Book  Google Scholar 

  45. Wilczynski W, Zakon HH, Brenowitz E (1984) Acoustic communication in spring peepers. J Comp Physiol A 155:577–584. https://doi.org/10.1007/BF00610843

    Article  Google Scholar 

  46. Wilczynski W, Keddy-Hector AC, Ryan M (1992) Call patterns and basilar papilla tuning in cricket frogs. I. Differences among populations and between sexes. Brain Behav Evol 39:229–237. https://doi.org/10.1159/000114120

    CAS  Article  PubMed  Google Scholar 

  47. Yager DD (1990) Sexual dimorphism of auditory function and structure in praying mantises (Mantodea; Dictyoptera). J Zool 221:517–537. https://doi.org/10.1111/j.1469-7998.1990.tb04017.x

    Article  Google Scholar 

  48. Zhao L, Wang J, Yang Y, Zhu B, Brauth SE, Tang Y, Cui J (2017) An exception to the matched filter hypothesis: a mismatch of male call frequency and female best hearing frequency in a torrent frog. Ecol Evol 7:419–428. https://doi.org/10.1002/ece3.2621

    Article  PubMed  Google Scholar 

  49. Zornik E, Kelley DB (2011) A neuroendocrine basis for the hierarchical control of frog courtship vocalizations. Front Neuroendocrinol 32:353–366. https://doi.org/10.1016/j.yfrne.2010.12.006

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks to Dr. Darcy B Kelley for all her support during the initial stages of this research project. We are grateful to Dr. Diane Papazian for providing the female frogs and to Frank Macias-Escriva for the data acquisition and analysis software. We thank the three anonymous reviewers for their valuable comments. We would like to acknowledge the financial support provided by the National Science Foundation (Award 1555734 to PMN) and the Grass Foundation (Grass Fellowship to ACC).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ariadna Cobo-Cuan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cobo-Cuan, A., Narins, P.M. Reciprocal Matched Filtering in the Inner Ear of the African Clawed Frog (Xenopus laevis). JARO 21, 33–42 (2020). https://doi.org/10.1007/s10162-019-00740-4

Download citation

Keywords

  • DPOAEs
  • coupled ears
  • amphibian papilla
  • basilar papilla
  • sexual dimorphism
  • hearing