Skip to main content
Log in

Temporal Envelope Coding by Inferior Colliculus Neurons with Cochlear Implant Stimulation

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Modulations in temporal envelopes are a ubiquitous property of natural sounds and are especially important for hearing with cochlear implants (CIs) because these devices typically discard temporal fine structure information. With few exceptions, neural temporal envelope processing has been studied in both normal hearing (NH) and CI animals using only pure sinusoidal amplitude modulation (SAM) which poorly represents the diversity of envelope shapes contained in natural sounds because it confounds repetition rate and the width of each modulation cycle. Here, we used stimuli that allow independent manipulation of the two parameters to characterize envelope processing by inferior colliculus (IC) neurons in barbiturate-anesthetized cats with CIs. Specifically, the stimuli were amplitude modulated, high rate pulse trains, where the envelope waveform interleaved single cycles (“bursts”) of a sinusoid with silent intervals. We found that IC neurons vary widely with respect to the envelope parameters that maximize their firing rates. In general, pure SAM was a relatively ineffective stimulus. The majority of neurons (60 %) preferred a combination of short bursts and low repetition rates (long silent intervals). Others preferred low repetition rates with minimal dependence on envelope width (17 %), while the remainder responded most strongly to brief bursts with lesser sensitivity to repetition rate (23 %). A simple phenomenological model suggests that a combination of inhibitory and intrinsic cellular mechanisms suffices to account for the wide variation in optimal envelope shapes. In contrast to the strong dependence of firing rate on envelope shape, neurons tended to phase lock precisely to the envelope regardless of shape. Most neurons tended to fire specifically near the peak of the modulation cycle, with little phase dispersion within or across neurons. Such consistently precise timing degrades envelope coding compared to NH processing of real-world sounds, because it effectively eliminates spike timing as a cue to envelope shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  • Bernstein LR, Trahiotis C (2002) Enhancing sensitivity to interaural delays at high frequencies by using “transposed stimuli”. J Acoust Soc Am 112:1026–1036

    Article  PubMed  Google Scholar 

  • Cai H, Carney LH, Colburn HS (1998) A model for binaural response properties of inferior colliculus neurons II A model with interaural time difference-sensitive excitatory and inhibitory inputs and an adaptation mechanism. J Acoust Soc Am 103:494–506

    Article  CAS  PubMed  Google Scholar 

  • Chung Y, Hancock KE, Nam SI, Delgutte B (2014) Coding of electric pulse trains presented through Cochlear implants in the auditory midbrain of awake rabbit: comparison with anesthetized preparations. J Neurosci 34:218–231. doi:10.1523/JNEUROSCI.2084-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Condon CJ, White KR, Feng AS (1996) Neurons with different temporal firing patterns in the inferior colliculus of the little brown bat differentially process sinusoidal amplitude-modulated signals. J Comp Physiol A 178:147–157

    Article  CAS  PubMed  Google Scholar 

  • D’Angelo WR, Sterbing SJ, Ostapoff E-M, Kuwada S (2003) Effects of amplitude modulation on the coding of interaural time differences of low-frequency sounds in the inferior colliculus II Neural mechanisms. J Neurophysiol 90:2827–2836. doi:10.1152/jn.00269.2003

    Article  PubMed  Google Scholar 

  • Delgutte B, Hammond BM, Cariani PA (1998) Neural coding of the temporal envelope of speech: relation to modulation transfer functions. Psychophys Physiol Adv Hear:595–603

  • Dietz M, Wang L, Greenberg D, McAlpine D (2016) Sensitivity to Interaural time differences conveyed in the stimulus envelope: estimating inputs of binaural neurons through the temporal analysis of spike trains. J Assoc Res Otolaryngol 17:313–330. doi:10.1007/s10162-016-0573-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Dynes SB, Delgutte B (1992) Phase-locking of auditory-nerve discharges to sinusoidal electric stimulation of the cochlea. Hear Res 58:79–90

    Article  CAS  PubMed  Google Scholar 

  • Ebert C, Fitzpatrick D, Cullen R, Finley C, Bassim M, Zdanski C, Coffey C, Crocker W, Skaggs J, Marshall A, Falk S (2004) Responses of binaural neurons to combined auditory and electrical stimulation. Assoc Res Otolaryngol Abstr 27:256

    Google Scholar 

  • Eggermont JJ (1994) Temporal modulation transfer functions for AM and FM stimuli in cat auditory cortex. Effects of carrier type, modulating waveform and intensity. Hear Res 74:51–66. doi:10.1016/0378-5955(94)90175-9

    Article  CAS  PubMed  Google Scholar 

  • Escabí MA, Miller LM, Read HL, Schreiner CE (2003) Naturalistic auditory contrast improves spectrotemporal coding in the cat inferior colliculus. J Neurosci 23:11489–11504

    PubMed  Google Scholar 

  • Frisina RD, Smith RL, Chamberlain SC (1990) Encoding of amplitude modulation in the gerbil cochlear nucleus: I. A hierarchy of enhancement. Hear Res 44:99–122

    Article  CAS  PubMed  Google Scholar 

  • Galvin JJ, Fu QJ (2005) Effects of stimulation rate, mode and level on modulation detection by cochlear implant users. JARO - J Assoc Res Otolaryngol 6:269–279. doi:10.1007/s10162-005-0007-6

    Article  PubMed  Google Scholar 

  • George SS, Shivdasani MN, Fallon JB (2016) Effect of current focusing on the sensitivity of inferior colliculus neurons to amplitude modulated stimulation. J Neurophysiol 116:1104–1116. doi:10.1152/jn.00126.2016

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldberg JM, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32:613–636

    CAS  PubMed  Google Scholar 

  • Grothe B (1994) Interaction of excitation and inhibition in processing of pure tone and amplitude-modulated stimuli in the medial superior olive of the mustached bat. J Neurophysiol 71:706–721

    CAS  PubMed  Google Scholar 

  • Hancock KE, Chung Y, Delgutte B (2012) Neural ITD coding with bilateral cochlear implants: effect of binaurally coherent jitter. J Neurophysiol 108:714–728. doi:10.1152/jn.00269.2012

    Article  PubMed  PubMed Central  Google Scholar 

  • Hancock KE, Chung Y, Delgutte B (2013) Congenital and prolonged adult-onset deafness cause distinct degradations in neural ITD coding with bilateral Cochlear implants. J Assoc Res Otolaryngol doi. doi:10.1007/s10162-013-0380-5

  • Hancock KE, Noel V, Ryugo DK, Delgutte B (2010) Neural coding of Interaural time differences with bilateral Cochlear implants: effects of congenital deafness. J Neurosci 30:14068–14079. doi:10.1523/jneurosci.3213-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heffer LF, Fallon JB (2008) A novel stimulus artifact removal technique for high-rate electrical stimulation. J Neurosci Methods 170:277–284. doi:10.1016/j.jneumeth.2008.01.023

    Article  PubMed  PubMed Central  Google Scholar 

  • Herrmann B, Parthasarathy A, Bartlett EL (2016) Aging affects dual encoding of periodicity and envelope shape in rat inferior colliculus neurons. Eur J Neurosci 2:1–13. doi:10.1111/ejn.13463

    Google Scholar 

  • Houtgast T, Steeneken HJ (1973) The modulation transfer function in room acoustics as a predictor of speech intelligibility. Acustica 28:66–73

    Google Scholar 

  • Hu H, Ewertdavid SD, Dietz M, Ewert SD, Mcalpine D, Dietz M (2017) Differences in the temporal course of interaural time difference sensitivity between acoustic and electric hearing in amplitude modulated stimuli J Acoust Soc Am 141 doi: 10.1121/1.4977014doi.org/10.1121/1.4977014

  • Joris PX, Schreiner CE, Rees A (2004) Neural processing of amplitude-modulated sounds. Physiol Rev 84:541–577. doi:10.1152/physrev.00029.200384/2/541

    Article  CAS  PubMed  Google Scholar 

  • Joris PX, Yin TC (1992) Responses to amplitude-modulated tones in the auditory nerve of the cat. J Acoust Soc Am 91:215–232

    Article  CAS  PubMed  Google Scholar 

  • Kiang NY, Moxon EC, Levine RA (1970) Auditory-nerve activity in cats with normal and abnormal cochleas. In: Wolstenholme GEW, Knight J (eds) Ciba foundation symposium - Sensorineural hearing loss. John Wiley & Sons, Ltd., Chichester, pp 241-273. doi:10.1002/9780470719756.ch15

  • Klein-Hennig M, Dietz M, Hohmann V, Ewert SD (2011) The influence of different segments of the ongoing envelope on sensitivity to interaural time delays. J Acoust Soc Am 129:3856–3872. doi:10.1121/1.3585847

    Article  PubMed  Google Scholar 

  • Krebs B, Lesica NA, Grothe B (2008) The representation of amplitude modulations in the mammalian auditory midbrain. J Neurophysiol 100:1602–1609. doi:10.1152/jn.90374.2008

    Article  PubMed  Google Scholar 

  • Kreft HA, Oxenham AJ, Nelson DA (2010) Modulation rate discrimination using half-wave rectified and sinusoidally amplitude modulated stimuli in cochlear-implant users. J Acoust Soc Am 127:656–659. doi:10.1121/1.3282947

    Article  PubMed  PubMed Central  Google Scholar 

  • Krishna BS, Semple MN (2000) Auditory temporal processing: responses to sinusoidally amplitude-modulated tones in the inferior colliculus. J Neurophysiol 84:255–273

    CAS  PubMed  Google Scholar 

  • Laback B, Zimmermann I, Majdak P, Baumgartner WD, Pok SM (2011) Effects of envelope shape on interaural envelope delay sensitivity in acoustic and electric hearing. J Acoust Soc Am 130:1515–1529. doi:10.1121/1.3613704

    Article  PubMed  Google Scholar 

  • Landsberger D (2008) Effects of modulation wave shape on modulation frequency discrimination with electrical hearing. J Acoust Soc Am 124:EL21–EL27. doi:10.1121/1.2947624

    Article  PubMed  PubMed Central  Google Scholar 

  • Langner G, Schreiner CE (1988) Periodicity coding in the inferior colliculus of the cat. I Neuronal mechanisms J Neurophysiol 60:1799–1822

    CAS  PubMed  Google Scholar 

  • Litvak L, Delgutte B, Eddington D (2001) Auditory nerve fiber responses to electric stimulation: modulated and unmodulated pulse trains. J Acoust Soc Am 110:368. doi:10.1121/1.1375140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Litvak L, Delgutte B, Eddington D (2003a) Improved neural representation of vowels in electric stimulation using desynchronizing pulse trains. J Acoust Soc Am 114:2099–2111

    Article  PubMed  PubMed Central  Google Scholar 

  • Litvak LM, Delgutte B, Eddington DK (2003b) Improved temporal coding of sinusoids in electric stimulation of the auditory nerve using desynchronizing pulse trains. J Acoust Soc Am 114:2079–2098. doi:10.1121/1.1612493

    Article  PubMed  PubMed Central  Google Scholar 

  • Middlebrooks JC (2008) Auditory cortex phase locking to amplitude-modulated cochlear implant pulse trains. J Neurophysiol 100:76–91. doi:10.1152/jn.01109.2007

    Article  PubMed  PubMed Central  Google Scholar 

  • Møller A, Rees A (1986) Dynamic properties of the responses of single neurons in the inferior colliculus of the rat. Hear Res 24:203–215

    Article  PubMed  Google Scholar 

  • Nelken I, Rotman Y, Bar Yosef O (1999) Responses of auditory-cortex neurons to structural features of natural sounds. Nature 397:154–157. doi:10.1038/16456

    Article  CAS  PubMed  Google Scholar 

  • Nelson PC, Carney LH (2004) A phenomenological model of peripheral and central neural responses to amplitude-modulated tones. J Acoust Soc Am 116:2173–2186. doi:10.1121/1.1784442

    Article  PubMed  PubMed Central  Google Scholar 

  • Noel V, Eddington D (2013) Sensitivity of bilateral cochlear implant users to fine-structure and envelope interaural time differences. J Acoust Soc Am 133:2314–2328

    Article  PubMed  PubMed Central  Google Scholar 

  • Oxenham AJ, Bernstein JGW, Penagos H (2004) Correct tonotopic representation is necessary for complex pitch perception. Proc Natl Acad Sci U S A 101:1421–1425. doi:10.1073/pnas.0306958101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rees A, Moller AR (1987) Stimulus properties influencing the responses of inferior colliculus neurons to amplitude-modulated sounds. Hear Res 27:129–143

    Article  CAS  PubMed  Google Scholar 

  • Rees A, Palmer AR (1989) Neuronal responses to amplitude-modulated and pure-tone stimuli in the guinea pig inferior colliculus, and their modification by broadband noise. J Acoust Soc Am 85:1978–1994

    Article  CAS  PubMed  Google Scholar 

  • Rubinstein JT, Wilson BS, Finley CC, Abbas PJ (1999) Pseudospontaneous activity: stochastic independence of auditory nerve fibers with electrical stimulation. Hear Res 127:108–118. doi:10.1016/S0378-5955(98)00185-3

    Article  CAS  PubMed  Google Scholar 

  • Shaddock Palombi P, Backoff PM, Caspary DM (2001) Responses of young and aged rat inferior colliculus neurons to sinusoidally amplitude modulated stimuli. Hear Res 153:174–180

    Article  CAS  PubMed  Google Scholar 

  • Sinex DG, Henderson J, Li H, Chen G-D (2002) Responses of chinchilla inferior colliculus neurons to amplitude-modulated tones with different envelopes. J Assoc Res Otolaryngol 3:390–402. doi:10.1007/s101620020026

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh NC, Theunissen FE (2003) Modulation spectra of natural sounds and ethological theories of auditory processing. J Acoust Soc Am 114:3394–3411. doi:10.1121/1.1624067

    Article  PubMed  Google Scholar 

  • Sivaramakrishnan S, Oliver DL (2001) Distinct K currents result in physiologically distinct cell types in the inferior colliculus of the rat. J Neurosci 21:2861–2877

    CAS  PubMed  Google Scholar 

  • Slama MCC, Delgutte B (2015) Neural coding of sound envelope in reverberant environments. J Neurosci 35:4452–4468. doi:10.1523/JNEUROSCI.3615-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith ZM (2010) Discrimination of Interaural time differences in speech with an asynchronous Cochlear implant sound coding strategy. Assoc Res Otolaryngol Abs 33:128

    Google Scholar 

  • Smith ZM, Delgutte B (2007) Sensitivity to interaural time differences in the inferior colliculus with bilateral cochlear implants. J Neurosci 27:6740–6750. doi:10.1523/JNEUROSCI.0052-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith ZM, Delgutte B (2008) Sensitivity of inferior colliculus neurons to interaural time differences in the envelope versus the fine structure with bilateral cochlear implants. J Neurophysiol 99:2390–2407. doi:10.1152/jn.00751.2007

    Article  PubMed  PubMed Central  Google Scholar 

  • Snyder R, Leake P, Rebscher S, Beitel R (1995) Temporal resolution of neurons in cat inferior colliculus to intracochlear electrical stimulation: effects of neonatal deafening and chronic stimulation. J Neurophysiol 73:449–467

    CAS  PubMed  Google Scholar 

  • Snyder RL, Vollmer M, Moore CM, Rebscher SJ, Leake PA, Beitel RE (2000) Responses of inferior colliculus neurons to amplitude-modulated intracochlear electrical pulses in deaf cats. J Neurophysiol 84:166–183

    CAS  PubMed  Google Scholar 

  • Sterbing SJ, D’Angelo WR, Ostapoff E-M, Kuwada S (2003) Effects of amplitude modulation on the coding of interaural time differences of low-frequency sounds in the inferior colliculus I Response properties. J Neurophysiol 90:2818–2826. doi:10.1152/jn.00268.2003

    Article  CAS  PubMed  Google Scholar 

  • van den Honert C, Stypulkowski PH (1987) Temporal response patterns of single auditory nerve fibers elicited by periodic electrical stimuli. Hear Res 29:207–222. doi:10.1016/0378-5955(87)90168-7

    Article  PubMed  Google Scholar 

  • Xu S, Shepherd RK, Chen Y, Clark GM (1993) Profound hearing loss in the cat following the single co-administration of kanamycin and ethacrynic acid. Hear Res 70:205–215. doi:10.1016/0378-5955(93)90159-X

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Escabí MA (2008) Distinct roles for onset and sustained activity in the neuronal code for temporal periodicity and acoustic envelope shape. J Neurosci 28:14230–14244. doi:10.1523/jneurosci.2882-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Escabí MA (2013) Proportional spike-timing precision and firing reliability underlie efficient temporal processing of periodicity and envelope shape cues. J Neurophysiol 110:587–606. doi:10.1152/jn.01080.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to Zach Smith for suggesting the stimulus paradigm, to Monty Escabí for sharing his data, and to Connie Miller for surgical support. Supported by NIDCD Grants R01 DC005775 and P30 DC005209.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth E. Hancock.

Ethics declarations

All procedures were approved by the Massachusetts Eye and Ear animal care and use committee.

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hancock, K.E., Chung, Y., McKinney, M.F. et al. Temporal Envelope Coding by Inferior Colliculus Neurons with Cochlear Implant Stimulation. JARO 18, 771–788 (2017). https://doi.org/10.1007/s10162-017-0638-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-017-0638-4

Keywords

Navigation