Emerging Gene Therapies for Genetic Hearing Loss

  • Hena Ahmed
  • Olga Shubina-Oleinik
  • Jeffrey R. HoltEmail author
Review Article


Gene therapy, or the treatment of human disease using genetic material, for inner ear dysfunction is coming of age. Recent progress in developing gene therapy treatments for genetic hearing loss has demonstrated tantalizing proof-of-principle in animal models. While successful translation of this progress into treatments for humans awaits, there is growing interest from patients, scientists, clinicians, and industry. Nonetheless, it is clear that a number of hurdles remain, and expectations for total restoration of auditory function should remain tempered until these challenges have been overcome. Here, we review progress, prospects, and challenges for gene therapy in the inner ear. We focus on technical aspects, including routes of gene delivery to the inner ear, choice of vectors, promoters, inner ear targets, therapeutic strategies, preliminary success stories, and points to consider for translating of these successes to the clinic.


gene therapy viral vectors genetic deafness hair cell inner ear spiral ganglion neuron cochlea vestibular 


  1. Aarnisalo AA, Pietola L, Joensuu J, Isosomppi J, Aarnisalo P, Dinculescu A, Lewin AS, Flannery J, Hauswirth WW, Sankila EM, Jero J (2007) Anti-clarin-1 AAV-delivered ribozyme induced apoptosis in the mouse cochlea. Hear Res 230:9–16. doi: 10.1016/j.heares.2007.03.004 PubMedCrossRefGoogle Scholar
  2. Adato A, Vreugde S, Joensuu T, Avidan N, Hamalainen R, Belenkiy O, Olender T, Bonne-Tamir B, Ben-Asher E, Espinos C, Millán JM (2002) USH3A transcripts encode clarin-1, a four-transmembrane-domain protein with a possible role in sensory synapses. Eur J Hum Genet 10:339–350. doi: 10.1038/sj.ejhg.5200831 PubMedCrossRefGoogle Scholar
  3. Ahmad S, Tang W, Chang Q, Qu Y, Hibshman J, Li Y, Söhl G, Willecke K, Chen P, Lin X (2007) Restoration of connexin26 protein level in the cochlea completely rescues hearing in a mouse model of human connexin30-linked deafness. Proc Natl Acad Sci 104:1337–1341. doi: 10.1073/pnas.0606855104 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Akil O, Seal RP, Burke K, Wang C, Alemi A, During M, Edwards RH, Lustig LR (2012) Restoration of hearing in the VGLUT3 knockout mouse using virally mediated gene therapy. Neuron 75:283–293. doi: 10.1016/j.neuron.2012.05.019 PubMedPubMedCentralCrossRefGoogle Scholar
  5. Alagramam KN, Gopal SR, Geng R, Chen DH, Nemet I, Lee R, Tian G, Miyagi M, Malagu KF, Lock CJ, Esmieu WR (2016) A small molecule mitigates hearing loss in a mouse model of Usher syndrome III. Nat Chem Biol 12:444–451. doi: 10.1038/nchembio.2069 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Alba R, Bosch A, Chillon M (2005) Gutless adenovirus: last-generation adenovirus for gene therapy. Gene Ther 12:S18–S27. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  7. Ali RR, Sarra GM, Stephens C, de Alwis M, Bainbridge JW, Munro PM, Fauser S, Reichel MB, Kinnon C, Hunt DM, Bhattacharya SS (2000) Restoration of photoreceptor ultrastructure and function in retinal degeneration slow mice by gene therapy. Nat Genet 25:306–310. doi: 10.1038/77068 PubMedCrossRefGoogle Scholar
  8. Aschauer D, Kreuz S, Rumpel S (2013) Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS One 8:e76310. doi: 10.1371/journal.pone.0076310 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Askew C, Rochat C, Pan B, Asai Y, Ahmed H, Child E, Holt JR (2015) Tmc gene therapy restores auditory function in deaf mice. Science Translational Medicine 7:295ra108. doi: 10.1126/scitranslmed.aab1996 PubMedCrossRefGoogle Scholar
  10. Bakhshandeh B, Kamaleddin MA, Aalishah KA (2017) Curr Stem Cell Res Ther 12(1):31–36PubMedCrossRefGoogle Scholar
  11. Bedrosian J, Gratton M, Brigande J (2006) In vivo delivery of recombinant viruses to the fetal murine cochlea: transduction characteristics and long-term effects on auditory function. Mol Ther 14:328–335. doi: 10.1016/j.ymthe.2006.04.003 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Belyantseva IA, Boger ET, Naz S, Frolenkov GI, Sellers JR, Ahmed ZM, Friedman TB (2005) Myosin-XVa is required for tip localization of whirlin and differential elongation of hair-cell stereocilia. Nat Cell Biol 7:148–156. doi: 10.1038/ncb1219 PubMedCrossRefGoogle Scholar
  13. Beurg M, Fettiplace R, Nam JH, Ricci AJ (2009) Localization of inner hair cell mechanotransducer channels using high-speed calcium imaging. Nature Neurosci 12:553–558. doi: 10.1038/nn.2295 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Bitner-Glindzicz M, Lindley KJ, Rutland P, Blaydon D, Smith VV, Milla PJ, Hussain K, Furth-Lavi J, Cosgrove KE, Shepherd RM, Barnes PD, O'Brien RE, Farndon PA, Sowden J, Liu XZ, Scanlan MJ, Malcolm S, Dunne MJ, Aynsley-Green A, Glaser B (2000) A recessive contiguous gene deletion causing infantile hyperinsulinism, enteropathy and deafness identifies the usher type 1C gene. Nat Genet 26(1):56–60.PubMedCrossRefGoogle Scholar
  15. Boëda B, El-Amraoui A, Bahloul A et al (2002) Myosin VIIa, harmonin and cadherin 23, three Usher I gene products that cooperate to shape the sensory hair cell bundle. EMBO J 21:6689–6699. doi: 10.1093/emboj/cdf689 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Borkholder DA, Zhu X, Frisina RD (2014) Round window membrane intracochlear drug delivery enhanced by induced advection. J Control Release 174:171–176PubMedCrossRefGoogle Scholar
  17. Budker V, Hagstrom JE, Lapina O, Eifrig D, Fritz J, Wolff JA (1997) Protein/amphipathic polyamine complexes enable highly efficient transfection with minimal toxicity. BioTechniques 23(1):139, 142–7.PubMedGoogle Scholar
  18. Calcedo R, Wilson JM (2013) Humoral immune response to AAV. Front Immunol 4:341. doi: 10.3389/fimmu.2013.00341 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cao M, Khan JA, Kang BY, Mehta JL, Hermonat PL (2012) Dual AAV/IL-10 plus STAT3 anti-inflammatory gene delivery lowers atherosclerosis in LDLR KO mice, but without increased benefit. Int J Vasc Med 2012:524235. doi: 10.1155/2012/524235 PubMedGoogle Scholar
  20. Castle MJ, Turunen HT, Vandenberghe LH, Wolfe JH (2016) Controlling AAV tropism in the nervous system with natural and engineered capsids. Methods Mol Biol 1382:133–149. doi: 10.1007/978-1-4939-3271-9_10 PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chang Q, Wang J, Li Q, Kim Y, Zhou B, Wang Y, Lin X (2015) Virally mediated Kcnq1 gene replacement therapy in the immature scala media restores hearing in a mouse model of human Jervell and Lange-Nielsen deafness syndrome. EMBO Mol Med 7:1077–1086. doi: 10.15252/emmm.201404929 PubMedPubMedCentralCrossRefGoogle Scholar
  22. Chen HH, Mack LM, Kelly R, Ontell M, Kochanek S, Clemens PR (1997) Persistence in muscle of an adenoviral vector that lacks all viral genes. Proc Natl Acad Sci U S A 94:1645–1650PubMedPubMedCentralCrossRefGoogle Scholar
  23. Chen K, Gao C (2013) TALENs: Customizable molecular DNA scissors for genome engineering of plants. J Genet Genomics 40:271–279. doi: 10.1016/j.jgg.2013.03.009 PubMedCrossRefGoogle Scholar
  24. Chen Q, Zou J, Shen Z, Zhang W, Yang J (2014a) Whirlin and PDZ domain-containing 7 (PDZD7) proteins are both required to form the quaternary protein complex associated with Usher syndrome type 2. J Biol Chem 289(52):36070–36088. doi: 10.1074/jbc.M114.610535 PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chen Y, Whitehead EH, Guimaraes C (2014b) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:647–661. doi: 10.1016/j.cell.2014.09.029 PubMedPubMedCentralCrossRefGoogle Scholar
  26. Chien WW, Isgrig K, Roy S, Belyantseva IA, Drummond MC, May LA, Cunningham LL (2016) Gene therapy restores hair cell stereocilia morphology in inner ears of deaf whirler mice. Mol Ther 24:17–25. doi: 10.1038/mt.2015.150 PubMedCrossRefGoogle Scholar
  27. Chien WW, Monzack EL, McDougald DS, Cunningham LL (2015a Jan) Gene therapy for sensorineural hearing loss. Ear Hear 36(1):1–7PubMedCrossRefGoogle Scholar
  28. Chien WW, McDougald DS, Roy S et al (2015b) Cochlear gene transfer mediated by adeno-associated virus: comparison of two surgical approaches. Laryngoscope 125:2557–2564. doi: 10.1038/srep02996 PubMedCrossRefGoogle Scholar
  29. Cideciyan AV, Hauswirth WW, Aleman TS, Kaushal S, Schwartz SB, Boye SL, Windsor EA, Conlon TJ, Sumaroka A, Roman AJ, Byrne BJ (2009) Vision 1 year after gene therapy for Leber’s congenital amaurosis. N Engl J Med 361:725–727. doi: 10.1056/NEJMc0903652 PubMedPubMedCentralCrossRefGoogle Scholar
  30. Colella P, Trapani I, Cesi G et al (2014) Efficient gene delivery to the cone-enriched pig retina by dual AAV vectors. Gene Ther 21:450–456. doi: 10.1038/gt.2014.8 PubMedCrossRefGoogle Scholar
  31. Colombo M, Raposo G, Théry C (2014) Annu Rev Cell Dev Biol 30:255–289. doi: 10.1146/annurev-cellbio-101512-122326 PubMedCrossRefGoogle Scholar
  32. Cronin J, Zhang X-Y, Reiser J (2005) Altering the tropism of lentiviral vectors through pseudotyping. Curr Gene Ther 5:387–398. doi: 10.2174/1566523054546224 PubMedPubMedCentralCrossRefGoogle Scholar
  33. Dazert S, Battaglia A, Ryan AF (1997) Transfection of neonatal rat cochlear cells in vitro with an adenovirus vector. Int J Dev Neurosci 15(4–5):595–600PubMedCrossRefGoogle Scholar
  34. De La Peña (2009) J Immunol Methods 344(2):121–132. doi: 10.1016/j.jim.2009.03.011 PubMedCrossRefGoogle Scholar
  35. De Silva SR, Charbel Issa P, Singh MS et al (2016) Single residue AAV capsid mutation improves transduction of photoreceptors in the Abca4(−/−) mouse and bipolar cells in the rd1 mouse and human retina ex vivo. Gene Ther 23:767–774. doi: 10.1038/gt.2016.54 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Denoyelle F, Weil D, Maw MA, Wilcox SA, Lench NJ, Allen-Powell DR, Dodé C (1997) Prelingual deafness: high prevalence of a 30delG mutation in the connexin 26 gene. Hum Mol Genet 6:2173–2177PubMedCrossRefGoogle Scholar
  37. Dyka FM, Boye SL, Chiodo VA, Hauswirth WW, Boye SE (2014) Dual adeno-associated virus vectors result in efficient in vitro and in vivo expression of an oversized gene, MYO7A. Hum Gene Ther Methods 25:166–177. doi: 10.1089/hgtb.2013.212 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Ebrahim S, Ingham NJ, Lewis MA, Rogers MJ, Cui R, Kachar B, Steel KP (2016) Alternative splice forms influence functions of whirlin in mechanosensory hair cell stereocilia. Cell Rep 15:935–943. doi: 10.1016/j.celrep.2016.03.081 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411(6836):494–498.PubMedCrossRefGoogle Scholar
  40. Ernfors P, Van De Water T, Loring J, Jaenisch R (1995) Complementary roles of BDNF and NT-3 in vestibular and auditory development. Neuron 14:1153–1164PubMedCrossRefGoogle Scholar
  41. Estivill X, Fortina P, Surrey S, Rabionet R, Melchionda S, D'Agruma L, Zelante L (1998) Connexin-26 mutations in sporadic and inherited sensorineural deafness. Lancet 351:394–398PubMedCrossRefGoogle Scholar
  42. Fevrier B (2004) Proc Natl Acad Sci U S A 101(26):9683–9688. doi: 10.1073/pnas.0308413101 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Fine EJ, Appleton CM, White DE, Brown MT, Deshmukh H, Kemp ML, Bao G (2015) Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes. Sci Rep 5:10777. doi: 10.1038/srep10777 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis Elegans. Nature 391(6669):806–811.PubMedCrossRefGoogle Scholar
  45. Frolenkov GI, Belyantseva IA, Friedman TB, Griffith AJ (2004) Genetic insights into the morphogenesis of inner ear hair cells. Nat Rev Genet 5:489–498. doi: 10.1038/nrg1377 PubMedCrossRefGoogle Scholar
  46. Fukui H, Raphael Y (2013) Gene therapy for the inner ear. Hear Res 297:99–105PubMedCrossRefGoogle Scholar
  47. Geguchadze RN, Machen L, Zourelias L, Gallo PH, Passineau MJ (2012) An AAV2/5 vector enhances safety of gene transfer to the mouse salivary gland. J Dent Res 91:382–386. doi: 10.1177/0022034512437373 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Géléoc GS, Holt JR (2014) Sound strategies for hearing restoration. Science 344(6184):1241062. doi: 10.1126/science.1241062 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Geng R, Melki S, Chen DHC, Tian G, Furness DN, Oshima-Takago T, Holt JR (2012) The mechanosensory structure of the hair cell requires clarin-1, a protein encoded by Usher syndrome III causative gene. J Neurosci 32:9485–9498. doi: 10.1523/JNEUROSCI.0311-12.2012 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J (2013) Gene therapy clinical trials worldwide to 2012—an update. J Gene Med 15:65–77. doi: 10.1002/jgm.2698 PubMedCrossRefGoogle Scholar
  51. Goodenough DA, Paul DL (2009) Gap junctions. Cold Spring Harb Perspect Biol 1:a002576. doi: 10.1101/cshperspect.a002576 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Gopal SR, Chen DHC, Chou SW, Zang J, Neuhauss SC, Stepanyan R, Alagramam KN (2015) Zebrafish models for the mechanosensory hair cell dysfunction in Usher syndrome 3 reveal that clarin-1 is an essential hair bundle protein. J Neurosci 35:10188–10201. doi: 10.1523/JNEUROSCI.1096-15.2015 PubMedPubMedCentralCrossRefGoogle Scholar
  53. Gregory FD, Bryan KE, Pangršič T, Calin-Jageman IE, Moser T et al (2011) Harmonin inhibits presynaptic Cav1.3 Ca2+ channels in mouse inner hair cells. Nat Neurosci 14:1109–1111. doi: 10.1038/nn.2895 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Gregory FD, Pangrsic T, Calin-Jageman IE, Moser T, Lee A (2013) Harmonin enhances voltage-794 dependent facilitation of Cav1.3 channels and synchronous exocytosis in mouse inner hair cells. J Physiol 591:3253–3269. doi: 10.1113/jphysiol.2013.254367 PubMedPubMedCentralCrossRefGoogle Scholar
  55. Grillet N, Xiong W, Reynolds A, Kazmierczak P, Sato T et al (2009) Harmonin mutations cause mechanotransduction defects in cochlear hair cells. Neuron 62:375–387. doi: 10.1016/j.neuron.2009.04.006 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Gulley RL, Reese TS (1976) Intercellular junctions in the reticular lamina of the organ of Corti. J Neurocytol 5:479–507PubMedCrossRefGoogle Scholar
  57. Guo BB, Bellingham SA, Hill AFJ (2015) Biol Chem 290(6):3455–3467. doi: 10.1074/jbc.M114.605253 CrossRefGoogle Scholar
  58. György B, Sage C, Indzhykulian AA, Scheffer DI, Brisson AR, Tan S, Wu X, Volak A, Mu D, Tamvakologos PI, Li Y, Fitzpatrick Z, Ericsson M, Breakefield XO, Corey DP, Maguire CA (2017) Rescue of Hearing by gene delivery to inner-ear hair cells using exosome-associated AAV. Mol Ther 25(2):379–391.PubMedCrossRefGoogle Scholar
  59. Han JJ, Mhatre AN, Wareing M et al (1999) Transgene expression in the guinea pig cochlea mediated by a lentivirus-derived gene transfer vector. Hum Gene Ther 10:1867–1873. doi: 10.1089/10430349950017545 PubMedCrossRefGoogle Scholar
  60. Harris JP, Ryan AF (1995) Fundamental immune mechanisms of the brain and inner ear. Otolaryngol Head Neck Surg 112(6):639–653.PubMedCrossRefGoogle Scholar
  61. Henne WM, Buchkovich NJ, Emr SD (2011) The ESCRT pathway. Dev Cell 21(1):77–91. doi: 10.1016/j.devcel.2011.05.015 PubMedCrossRefGoogle Scholar
  62. Hickox AE, Larsen E, Heinz MG, Shinobu L, Whitton JP (2017) Translational issues in cochlear synaptopathy. Hear Res. 2017 Jan 6. pii: S0378-5955(16)30444-0.Google Scholar
  63. Hilgert N, Alasti F, Dieltjens N, Pawlik B, Wollnik B, Uyguner O, Delmaghani S, Weil D, Petit C, Danis E, Yang T (2008) Mutation analysis of TMC1 identifies four new mutations and suggests an additional deafness gene at loci DFNA36 and DFNB7/11. Clin Genet 74:223–232. doi: 10.1111/j.1399-0004.2008.01053.x PubMedPubMedCentralCrossRefGoogle Scholar
  64. Hirano S, Nishimasu H, Ishitani R, Nureki O (2016) Structural basis for the altered PAM specificities of engineered CRISPR-Cas9. Mol Cell 61:886–894. doi: 10.1016/j.molcel.2016.02.018 PubMedCrossRefGoogle Scholar
  65. Husseman J, Raphael Y (2009) Gene therapy in the inner ear using adenovirus vectors. Adv Otorhinolaryngol 66:37–51. doi: 10.1159/000218206 PubMedPubMedCentralGoogle Scholar
  66. Iizuka T, Kamiya K, Gotoh S et al (2015) Perinatal Gjb2 gene transfer rescues hearing in a mouse model of hereditary deafness. Hum Mol Gen 24:3651–3661. doi: 10.1093/hmg/ddv109 PubMedGoogle Scholar
  67. Imtiaz A, Maqsood A, Rehman AU, Morell RJ, Holt JR, Friedman TB, Naz S (2016) Recessive mutations of TMC1 associated with moderate to severe hearing loss. Neurogenetics 17(2):115–123.Google Scholar
  68. Isgrig K, Shteamer JW, Belyantseva IA, Drummond MC, Fitzgerald TS, Vijayakumar S, Jones SM, Griffith AJ, Friedman TB, Cunningham LL, Chien WW (2017) Gene therapy restores balance and auditory functions in a mouse model of Usher syndrome. Mol Ther 25(3):780–791. doi: 10.1016/j.ymthe.2017.01.007 PubMedCrossRefGoogle Scholar
  69. Jacobson SG, Cideciyan AV, Ratnakaram R, Heon E, Schwartz SB, Roman AJ, Peden MC, Aleman TS, Boye SL, Sumaroka A, Conlon TJ (2012) Gene therapy for Leber congenital amaurosis caused by RPE65 mutations: safety and efficacy in 15 children and adults followed up to 3 years. Arch Ophthalmol 130:9–24. doi: 10.1001/archophthalmol.2011.298 PubMedCrossRefGoogle Scholar
  70. Jero J, Mhatre AN, Tseng CJ et al (2001) Cochlear gene delivery through an intact round window membrane in mouse. Hum Gene Ther 12:539–548. doi: 10.1089/104303401300042465 PubMedCrossRefGoogle Scholar
  71. Juliano RL (2016) The delivery of therapeutic oligonucleotides. Nucleic Acids Res 44(14):6518–6548. doi: 10.1093/nar/gkw236 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kalay E, Karaguzel A, Caylan R, Heister A, Cremers FPM, Cremers CWRJ, Brunner HG, de Brouwer APM, Kremer H (2005) Four novel TMC1 (DFNB7/DFNB11) mutations in Turkish patients with congenital autosomal recessive nonsyndromic hearing loss. Hum Mutat 26:591–591. doi: 10.1002/humu.9384 PubMedCrossRefGoogle Scholar
  73. Kanzaki S, Stöver T, Kawamoto K, Prieskorn DM, Altschuler RA, Miller JM, Raphael Y (2002) Glial cell line-derived neurotrophic factor and chronic electrical stimulation prevent VIII cranial nerve degeneration following denervation. J Comp Neurol 454:350–360. doi: 10.1002/cne.10480 PubMedCrossRefGoogle Scholar
  74. Kawashima Y, Géléoc GS, Kurima K, Labay V, Lelli A, Asai Y, Griffith AJ (2011) Mechanotransduction in mouse inner ear hair cells requires transmembrane channel-like genes. J Clin Invest 121:4796–4809. doi: 10.1172/JCI60405 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Kelsell DP, Dunlop J, Stevens HP, Lench NJ, Liang JN, Parry G, Leigh IM (1997) Connexin 26 mutations in hereditary non-syndromic sensorineural deafness. Nature 387:80–83. doi: 10.1038/387080a0 PubMedCrossRefGoogle Scholar
  76. Kesser BW, Hashisaki GT, Fletcher K, Eppard H, Holt JR (2007) An in vitro model system to study gene therapy in the human inner ear. Gene Ther 14:1121–1131. doi: 10.1038/ PubMedPubMedCentralCrossRefGoogle Scholar
  77. Kikuchi T, Kimura RS, Paul DL, Adams JC (1995) Gap junctions in the rat cochlea: immunohistochemical and ultrastructural analysis. Anat Embryol 191:101–118PubMedCrossRefGoogle Scholar
  78. Kilpatrick LA, Li Q, Yang J, Goddard JC, Fekete DM, Lang H (2011) Adeno-associated virus-mediated gene delivery into the scala media of the normal and deafened adult mouse ear. Gene Ther 18:569–578. doi: 10.1038/gt.2010.175 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Kim MA, Cho HJ, Bae SH, Lee B, Oh SK, Kwon TJ, Ryoo ZY, Kim HY, Cho JH, Kim UK, Lee KY (2016) Methionine sulfoxide reductase B3-targeted in utero gene therapy rescues hearing function in a mouse model of congenital sensorineural hearing loss. Antioxid Redox Signal 24:590–602. doi: 10.1089/ars.2015.6442 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kitahara T, Fukushima M, Uno Y, Mishiro Y, Kubo T (2003) Up-regulation of cochlear aquaporin-3 mRNA expression after intra-endolymphatic sac application of dexamethasone. Neurol Res 25(8):865–870PubMedCrossRefGoogle Scholar
  81. Kitajiri SI, McNamara R, Makishima T et al (2007) Identities, frequencies and origins of TMC1 mutations causing DFNB7/B11 deafness in Pakistan. Clin Genet 72:546–550. doi: 10.1111/j.1399-0004.2007.00895.x PubMedCrossRefGoogle Scholar
  82. Kleinstiver BP, Prew MS, Tsai SQ et al (2015a) Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nat Biotechnol 33:1293–1298. doi: 10.1038/nbt.3404 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Kleinstiver BP, Prew MS, Tsai SQ et al (2015b) Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523:481–485. doi: 10.1038/nature14592 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Kleinstiver BP, Wolfs JM, Kolaczyk T et al (2012) Monomeric site-specific nucleases for genome editing. Proc Natl Acad Sci 109:8061–8066. doi: 10.1073/pnas.1117984109 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Klug A (2010) The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu Rev Biochem 79:213–231PubMedCrossRefGoogle Scholar
  86. Kobel M, Le Prell CG, Liu J, Hawks JW, Bao J (2016) Noise-induced cochlear synaptopathy: past findings and future studies. Hear Res. doi: 10.1016/j.heares.2016.12.008
  87. Kole R, Sazani P (2001) Antisense effects in the cell nucleus: modification of splicing. Curr Opin Mol Ther 3(3):229–234PubMedGoogle Scholar
  88. Komor AC, Kim YB, Packer MS et al (2016) Programmable editing of a target base in genomicDNA without double-stranded DNA cleavage. Nature 533:420–424. doi: 10.1038/nature17946 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Konishi M, Kawamoto K, Izumikawa M et al (2008a) Gene transfer into guinea pig cochlea using adeno-associated virus vectors. J Gene Med 10:610–618. doi: 10.1002/jgm.1189 PubMedCrossRefGoogle Scholar
  90. Konishi M, Kawamoto K, Izumikawa M, Kuriyama H, Yamashita T (2008b) Gene transfer into guinea pig cochlea using adeno-associated virus vectors. J Gene Med 10:610–618. doi: 10.1002/jgm.1189 PubMedCrossRefGoogle Scholar
  91. Koo T, Popplewell L, Athanasopoulos T, Dickson G (2014) Triple trans-splicing adeno-associated virus vectors capable of transferring the coding sequence for full-length dystrophin protein into dystrophic mice. Hum Gene Ther 25:98–108. doi: 10.1089/hum.2013.164 PubMedCrossRefGoogle Scholar
  92. Kooijmans SA (2012) Int J Nanomedicine 7:1525–1541. doi: 10.2147/IJN.S2966 PubMedPubMedCentralGoogle Scholar
  93. Kohrman DC, Raphael Y (2013) Gene therapy for deafness. Gene Ther 20(12):1119–1123PubMedPubMedCentralCrossRefGoogle Scholar
  94. Kuang R, Hever G, Zajic G, Yan Q, Collins F, Louis JC, Magal E (1999) Glial cell line-derived neurotrophic factor: potential for otoprotection. Ann N Y Acad Sci 884:270–291. doi: 10.1111/j.1749-6632.1999.tb08648.x PubMedCrossRefGoogle Scholar
  95. Kurima K, Ebrahim S, Pan B, Sedlacek M, Sengupta P, Millis BA, Cui R, Nakanishi H, Fujikawa T, Kawashima Y, Choi BY, Monahan K, Holt JR, Griffith AJ, Kachar B (2015) TMC1 and TMC2 localize at the site of Mechanotransduction in mammalian inner ear hair cell Stereocilia. Cell Rep 12(10):1606–1617.PubMedPubMedCentralCrossRefGoogle Scholar
  96. Kurima K, Peters LM et al (2002a) Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear hair-cell function. Nat Genet 30:277–284PubMedCrossRefGoogle Scholar
  97. Kurima K, Peters LM, Yang Y, Riazuddin S, Ahmed ZM, Naz S, Ghosh M (2002b) Dominant and recessive deafness caused by mutations of a novel gene, TMC1, required for cochlear hair-cell function. Nat Genet 30:277–284. doi: 10.1038/ng842 PubMedCrossRefGoogle Scholar
  98. Lalwani AK, Han JJ, Castelein CM, Carvalho GJ, Mhatre AN (2002) In vitro and in vivo assessment of the ability of adeno-associated virus–brain-derived neurotrophic factor to enhance spiral ganglion cell survival following ototoxic insult. Laryngoscope 112:1325–1334. doi: 10.1097/00005537-200208000-00001 PubMedCrossRefGoogle Scholar
  99. Landegger LD, Pan B, Askew C, Wassmer SJ, Gluck SD, Galvin A, Taylor R, Forge A, Stankovic KM, Holt JR, Vandenberghe LH (2017) A synthetic AAV vector enables safe and efficient gene transfer to the mammalian inner ear. Nat Biotechnol 35(3):280–284.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Lee MP, Ravenel JD, Hu RJ, Lustig LR, Tomaselli G, Berger RD, Francis H (2000) Targeted disruption of the Kvlqt1 gene causes deafness and gastric hyperplasia in mice. J Clin Invest 106:1447–1455. doi: 10.1172/JCI10897 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Lefèvre G, Michel V, Weil D, Lepelletier L, Bizard E et al (2008) A core cochlear phenotype in USH1 mouse mutants implicates fibrous links of the hair bundle in its cohesion, orientation and differential growth. Development 135(8):1427–1437. doi: 10.1242/dev.012922 PubMedCrossRefGoogle Scholar
  102. Lentz JJ, Jodelka FM, Hinrich AJ, McCaffrey KE, Farris HE, Spalitta MJ, Bazan NG, Duelli DM, Rigo F, Hastings ML (2013) Rescue of hearing and vestibular function by antisense oligonucleotides in a mouse model of human deafness. Nat Med 19:345–350. doi: 10.1038/nm.3106 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Li Duan M, Bordet T, Mezzina M, Kahn A, Ulfendahl M (2002) Adenoviral and adeno-associated viral vector mediated gene transfer in the guinea pig cochlea. Neuroreport 13:1295–1299PubMedCrossRefGoogle Scholar
  104. Li J, Sun W, Wang B, Xiao X, Liu XQ (2008) Protein trans-splicing as a means for viral vector-mediated in vivo gene therapy. Hum Gene Ther 19:958–964. doi: 10.1089/hum.2008.009 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Li W, Kong W, Yue J (2006) Gene transfer into the mammalian inner ear using a RNAi non-viral vector. Lin Chuang Er Bi Yan Hou Ke Za Zhi 20:1024–1026PubMedGoogle Scholar
  106. Liberman MC, Kujawa SG (2017) Cochlear synaptopathy in acquired sensorineural hearing loss: manifestations and mechanisms. Hear Res. pii: S0378-5955(16)30250-7.Google Scholar
  107. Liu Y, Okada T, Sheykholeslami K et al (2005) Specific and efficient transduction of cochlear inner hair cells with recombinant adeno-associated virus type 3 vector. Mol Ther 12:725–733. doi: 10.1016/j.ymthe.2005.03.021 PubMedCrossRefGoogle Scholar
  108. Logan AC, Haas DL, Kafri T, Kohn DB (2004) Integrated self-inactivating lentiviral vectors produce full-length genomic transcripts competent for encapsidation and integration. J Virol 78:8421–8436. doi: 10.1128/JVI.78.16.8421-8436.2004 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Luo H, Schmidt JA, Lee YS, Oltz EM, Payton JE (2017) Targeted epigenetic repression of a lymphoma oncogene by sequence-specific histone modifiers induces apoptosis in DLBCL. Leuk Lymphoma 58:445–456. doi: 10.1080/10428194.2016.1190973 PubMedCrossRefGoogle Scholar
  110. Maeda Y, Fukushima K, Kawasaki A, Nishizaki K, Smith RJ (2007) Cochlear expression of a dominant-negative GJB2 R75W construct delivered through the round window membrane in mice. Neurosci Res 58:250–254. doi: 10.1016/j.neures.2007.03.006 PubMedCrossRefGoogle Scholar
  111. Maeda Y, Fukushima K, Nishizaki K, Smith RJ (2005) In vitro and in vivo suppression of GJB2 expression by RNA interference. Hum Mol Genet 14:1641–1650. doi: 10.1093/hmg/ddi172 PubMedCrossRefGoogle Scholar
  112. Maguire AM, High KA, Auricchio A, Wright JF, Pierce EA, Testa F, Mingozzi F, Bennicelli JL, Ying GS, Rossi S, Fulton A (2009) Age-dependent effects of RPE65 gene therapy for Leber’s congenital amaurosis: a phase 1 dose-escalation trial. Lancet 374:1597–1605. doi: 10.1016/S0140-6736(09)61836-5 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Manno CS, Pierce GF, Arruda VR, Glader B, Ragni M, Rasko JJ, Ozelo MC, Hoots K, Blatt P, Konkle B, Dake M (2006) Successful transduction of liver in hemophilia by AAV-factor IX and limitations imposed by the host immune response. Nat Med 12:342–347. doi: 10.1038/nm1358 PubMedCrossRefGoogle Scholar
  114. Mao Y, Wang X, Yan R, Hu W, Li A, Wang S, Li H (2016) Single point mutation in adeno-associated viral vectors-DJ capsid leads to improvement for gene delivery in vivo. BMC Biotechnol 16:1. doi: 10.1186/s12896-015-0230-0 PubMedPubMedCentralCrossRefGoogle Scholar
  115. McDonald JI, Celik H, Rois LE (2016) Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation. Biology Open bio-019067. doi: 10.1242/bio.019067
  116. Melo S. A.(2014). Cancer cell. 5:707–721. doi: 10.1016/j.ccell.2014.09.005
  117. Miller JM, Chi DH, O'Keeffe LJ, Kruszka P, Raphael Y, Altschuler RA (1997) Neurotrophins can enhance spiral ganglion cell survival after inner hair cell loss. Int J Dev Neurosci 15:631–643PubMedCrossRefGoogle Scholar
  118. Mingozzi F, High KA (2013) Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood 122:23–36. doi: 10.1182/blood-2013-01-306647 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Minoda R, Miwa T, Ise M, Takeda H (2015 Aug) Potential treatments for genetic hearing loss in humans: current conundrums. Gene Ther 22(8):603–609PubMedCrossRefGoogle Scholar
  120. Moorhead JW, Clayton GH, Smith RL, Schaack J (1999) A replication-incompetent adenovirus vector with the preterminal protein gene deleted efficiently transduces mouse ears. J Virol 73:1046–1053PubMedPubMedCentralGoogle Scholar
  121. Morral N, Parks RJ, Zhou H et al (1998) High doses of a helper-dependent adenoviral vector yield supraphysiological levels of alpha1-antitrypsin with negligible toxicity. Hum Gene Ther 9:2709–2716PubMedCrossRefGoogle Scholar
  122. Naz S, Griffith AJ, Riazuddin S, Hampton LL, Battey JF, Khan SN, Friedman TB (2004) Mutations of ESPN cause autosomal recessive deafness and vestibular dysfunction. J Med Genet 41:591–595. doi: 10.1136/jmg.2004.018523 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Naz S, Imtiaz A, Mujtaba G, Maqsood A, Bashir R, Bukhari I, Khan MR, Ramzan M, Fatima A, Rehman AU, Iqbal M, Chaudhry T, Lund M, Brewer CC, Morell RJ, Friedman TB (2017) Genetic causes of moderate to severe hearing loss point to modifiers. Clin Genet 91(4):589–598.PubMedCrossRefGoogle Scholar
  124. Okano T, Nakagawa T, Kita T et al (2006) Cell-gene delivery of brain-derived neurotrophic factor to the mouse inner ear. Mol Ther 14:866–871. doi: 10.1016/j.ymthe.2006.06.012 PubMedCrossRefGoogle Scholar
  125. Ota CY, Kimura RS (1980) Ultrastructural study of the human spiral ganglion. Acta Otolaryngol 89:53–62PubMedCrossRefGoogle Scholar
  126. Ouyang XM, Yan D, Du LL, Hejtmancik JF, Jacobson SG, Nance WE, Li AR, Angeli S, Kaiser M, Newton V, Brown SD (2005) Characterization of Usher syndrome type I gene mutations in an Usher syndrome patient population. Hum Genet 116:292–299. doi: 10.1007/s00439-004-1227-2 PubMedCrossRefGoogle Scholar
  127. Pan B, Askew C, Galvin A, et al (2017) Gene therapy restores auditory and vestibular function 1 in a mouse model of Usher syndrome, type 1c. Nat Biotechnol 35(3):264–272Google Scholar
  128. Pan B, Géléoc GS, Asai Y, Horwitz GC, Kurima K, Ishikawa K, Kawashima Y, Griffith AJ, Holt JR (2013) TMC1 and TMC2 are components of the mechanotransduction channel in hair cells of the mammalian inner ear. Neuron 79(3):504–515.PubMedCrossRefGoogle Scholar
  129. Parker MA, Cheng YF, Kinouchi H, Bieber R, Edge AS (2013) An independent construct for conditional expression of atonal homolog-1. Hum Gen Ther Methods 25:1–13. doi: 10.1089/hgtb.2013.014 Google Scholar
  130. Payne JG, Takahashi A, Higgins MI et al (2016) Multilineage transduction of resident lung cells in vivo by AAV2/8 for α1-antitrypsin gene therapy. Mol Ther Methods Clin Dev 3:16042. doi: 10.1038/mtm.2016.42 PubMedPubMedCentralCrossRefGoogle Scholar
  131. Pfingst BE, Bowling SA, Colesa DJ et al (2011) Cochlear infrastructure for electrical hearing. Hear Res 281:65–73. doi: 10.1016/j.heares.2011.05.002 PubMedPubMedCentralCrossRefGoogle Scholar
  132. Pietola L, Aarnisalo AA, Joensuu J, Pellinen R, Wahlfors J, Jero J (2008) HOX-GFP and WOX-GFP lentivirus vectors for inner ear gene transfer. Acta Otolaryngol 128:613–620. doi: 10.1080/00016480701663409 PubMedCrossRefGoogle Scholar
  133. Pinyon JL, Tadros SF, Froud KE et al (2014) Close-field electroporation gene delivery using the cochlear implant electrode array enhances the bionic ear. Sci Transl Med 6:233ra54. doi: 10.1126/scitranslmed.3008177 PubMedCrossRefGoogle Scholar
  134. Pirvola U, Hallböök F, Xing-Qun L, Virkkala J, Saarma M, Ylikoski J (1997) Expression of neurotrophins and Turk receptors in the developing, adult, and regenerating avian cochlea. J Neurobiol 33:1019–1033PubMedCrossRefGoogle Scholar
  135. Praetorius M, Pfannenstiel S, Klingmann C, Baumann I, Plinkert PK, Staecker H (2008) Expression patterns of non-viral transfection with GFP in the organ of Corti in vitro and in vivo. Gene therapy of the inner ear with non-viral vectors. HNO 56:524–529. doi: 10.1007/s00106-008-1738-6 PubMedCrossRefGoogle Scholar
  136. Puligilla C, Dabdoub A, Brenowitz SD, Kelley MW (2010) Sox2 induces neuronal formation in the developing mammalian cochlea. J Neurosci 30:714–722. doi: 10.1523/JNEUROSCI.3852-09.2010 PubMedPubMedCentralCrossRefGoogle Scholar
  137. Qi LS, Larson MH, Gilbert LA et al (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183. doi: 10.1016/j.cell.2013.02.022 PubMedPubMedCentralCrossRefGoogle Scholar
  138. Rabinowitz JE, Samulski RJ (2000) Building a better vector: the manipulation of AAV virions. Virology 278:301–308. doi: 10.1006/viro.2000.0707 PubMedCrossRefGoogle Scholar
  139. Räty JK, Lesch HP, Wirth T, Ylä-Herttuala S (2008) Improving safety of gene therapy. Curr Drug Saf 3:46–53. doi: 10.2174/157488608783333925 PubMedCrossRefGoogle Scholar
  140. Ren L-L, Wu Y, Han D et al (2010) Math1 gene transfer based on the delivery system of quaternized chitosan/Na-carboxymethyl-β-cyclodextrin nanoparticles. J Nanosci Nanotech 10:7262–7265. doi: 10.1166/jnn.2010.2822
  141. Richard G, White TW, Smith LE, Bailey RA, Compton JG, Paul DL, Bale SJ (1998) Functional defects of Cx26 resulting from a heterozygous missense mutation in a family with dominant deaf-mutism and palmoplantar keratoderma. Hum Genet 103:393–399PubMedCrossRefGoogle Scholar
  142. Rivera T, Sanz L, Camarero G, Varela-Nieto I (2012) Drug delivery to the inner ear: strategies and their therapeutic implications for sensorineural hearing loss. Curr Drug Deliv 9(3):231–242PubMedCrossRefGoogle Scholar
  143. Ruel J, Emery S, Nouvian R, Bersot T, Amilhon B, Van Rybroek JM, Rebillard G, Lenoir M, Eybalin M, Delprat B, Sivakumaran TA (2008) Impairment of SLC17A8 encoding vesicular glutamate transporter-3, VGLUT3, underlies nonsyndromic deafness DFNA25 and inner hair cell dysfunction in null mice. Am J Hum Genet 83:278–292. doi: 10.1016/j.ajhg.2008.07.008 PubMedPubMedCentralCrossRefGoogle Scholar
  144. Sacheli R, Delacroix L, Vandenackerveken P, Nguyen L, Malgrange B (2013) Gene transfer in inner ear cells: a challenging race. Gene Ther 20:237–247. doi: 10.1038/gt.2012.51 PubMedCrossRefGoogle Scholar
  145. Sallach J, Di Pasquale G, Larcher F et al (2014) Tropism-modified AAV vectors overcome barriers to successful cutaneous therapy. Mol Ther 22:929–939. doi: 10.1038/mt.2014.14 PubMedPubMedCentralCrossRefGoogle Scholar
  146. Santos RLP, Wajid M, Khan MN, McArthur N, Pham TL, Bhatti A, Lee K, Irshad S, Mir A, Yan K, Chahrour MH (2005) Novel sequence variants in the TMC1 gene in Pakistani families with autosomal recessive hearing impairment. Hum Mutat 26:396–396. doi: 10.1002/humu.9374 PubMedPubMedCentralCrossRefGoogle Scholar
  147. Sayroo R, Nolasco D, Yin Z, Colon-Cortes Y, Pandya M, Ling C, Aslanidi G (2016) Development of novel AAV serotype 6 based vectors with selective tropism for human cancer cells. Gene Ther 23:18–25. doi: 10.1038/gt.2015.89 PubMedCrossRefGoogle Scholar
  148. Seal RP, Akil O, Yi E, Weber CM, Grant L, Yoo J, Clause A, Kandler K, Noebels JL, Glowatzki E, Lustig LR (2008) Sensorineural deafness and seizures in mice lacking vesicular glutamate transporter 3. Neuron 57:263–275. doi: 10.1016/j.neuron.2007.11.032 PubMedPubMedCentralCrossRefGoogle Scholar
  149. Shcharbin DG, Klajnert B, Bryszewska M (2009) Dendrimers in gene transfection. Biochemistry 74(10):1070–1079.PubMedGoogle Scholar
  150. Shibata SB, Ranum PT, Moteki H, Pan B, Goodwin AT, Goodman SS, Abbas PJ, Holt JR, Smith RJ (2016) RNA interference prevents autosomal-dominant hearing loss. Am J Hum Genet 98:1101–1113. doi: 10.1016/j.ajhg.2016.03.028 PubMedPubMedCentralCrossRefGoogle Scholar
  151. Shu Y, Tao Y, Li W, Shen J, Wang Z, Chen Z-Y 2016. Adenovirus vectors target several cell subtypes of mammalian inner ear in vivo. Neural Plast. 2016: 9409846. Published online 2016 Dec 28. doi:  10.1155/2016/9409846
  152. Silva G, Poirot L, Galetto R, Smith J, Montoya G, Duchateau P, Pâques F (2011) Meganucleases and other tools for targeted genome engineering: perspectives and challenges for gene therapy. Curr Gene Ther 11:11–27. doi: 10.2174/156652311794520111 PubMedPubMedCentralCrossRefGoogle Scholar
  153. Simonelli F, Maguire AM, Testa F, Pierce EA, Mingozzi F, Bennicelli JL, Rossi S, Marshall K, Banfi S, Surace EM, Sun J (2010) Gene therapy for Leber’s congenital amaurosis is safe and effective through 1.5 years after vector administration. Mol Ther 18:643–650. doi: 10.1001/archophthalmol.2011.298 PubMedCrossRefGoogle Scholar
  154. Sırmacı A, Duman D, Öztürkmen-Akay H, Erbek S, Incesulu A, Oztürk-Hişmi B, Arici ZS, Yüksel-Konuk EB, Taşir-Yilmaz S, Tokgöz-Yilmaz S, Cengiz FB, Aslan I, Yildirim M, Hasanefendioğlu-Bayrak A, Ayçiçek A, Yilmaz I, Fitoz S, Altin F, Ozdağ H, Tekin M (2009) Mutations in TMC1 contribute significantly to nonsyndromic autosomal recessive sensorineural hearing loss: a report of five novel mutations. Int J Pediatr Otorhinolaryngol 73:699–705. doi: 10.1016/j.ijporl.2009.01.005
  155. Sloan-Heggen CM, Bierer AO, Shearer AE, Kolbe DL, Nishimura CJ, Frees KL, Ephraim SS, Shibata SB, Booth KT, Campbell CA, Ranum PT (2016) Comprehensive genetic testing in the clinical evaluation of 1119 patients with hearing loss. Hum Genet 135(4):441–450. doi: 10.1007/s00439-016-1648-8 PubMedPubMedCentralCrossRefGoogle Scholar
  156. Snowden AW, Gregory PD, Case CC, Pabo CO (2002) Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Curr Biol 12:2159–2166. doi: 10.1016/S0960-9822(02)01391-X PubMedCrossRefGoogle Scholar
  157. Souter M (2008) Gap junctions and connexin expression in the inner ear. Gap Junction-Mediated Intercellular Signalling in Health and Disease 797:134Google Scholar
  158. Spoendlin H (1981) Differentiation of cochlear afferent neurons. Acta Otolaryngol 91:451–456PubMedCrossRefGoogle Scholar
  159. Staecker H, Schlecker C, Kraft S, Praetorius M, Hsu C, Brough DE (2014) Optimizing atoh1-induced vestibular hair cell regeneration. Laryngoscope 124:S1–S12. doi: 10.1002/lary.24775 PubMedPubMedCentralCrossRefGoogle Scholar
  160. Steel KP, Barkway C (1989) Another role for melanocytes: their importance for normal stria vascularis development in the mammalian inner ear. Development 107:453–463PubMedGoogle Scholar
  161. Suzuki J, Hashimoto K, Xiao R, Vandenberghe LH, Liberman MC (2017) Cochlear gene therapy with ancestral AAV in adult mice: complete transduction of inner hair cells without cochlear dysfunction. Sci Rep 7:45524PubMedPubMedCentralCrossRefGoogle Scholar
  162. Takada Y, Beyer LA, Swiderski DL, O'Neal AL, Prieskorn DM, Shivatzki S, Avraham KB, Raphael Y (2014) Connexin 26 null mice exhibit spiral ganglion degeneration that can be blocked by BDNF gene therapy. Hear Res 309:124–135. doi: 10.1016/j.heares.2013.11.00 PubMedCrossRefGoogle Scholar
  163. Takada Y, Takada T, Lee MY et al (2015) Ototoxicity-induced loss of hearing and inner hair cells is attenuated by HSP70 gene transfer. Mol Ther Methods Clin Dev 2:15019. doi: 10.1038/mtm.2015.19 PubMedPubMedCentralCrossRefGoogle Scholar
  164. Tal-Goldberg T, Lorain S, Mitrani-Rosenbaum S (2014) Correction of the middle eastern M712T mutation causing GNE myopathy by trans-splicing. NeuroMolecular Med 16:322–331. doi: 10.1007/s12017-013-8278-2 PubMedCrossRefGoogle Scholar
  165. Tamm I, Dörken B, Hartmann G (2001) Antisense therapy in oncology: new hope for an old idea? Lancet 358(9280):489–497. doi: 10.1016/S0140-6736(01)05629-X PubMedCrossRefGoogle Scholar
  166. Tamura T, Kita T, Nakagawa T et al (2005) Drug delivery to the cochlea using PLGA nanoparticles. Laryngoscope 115:2000–2005. doi: 10.1097/01.mlg.0000180174.81036.5a PubMedCrossRefGoogle Scholar
  167. Thakore PI, D'Ippolito AM, Song L et al (2015) Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods 12:1143–1149. doi: 10.1038/nmeth.3630 PubMedPubMedCentralCrossRefGoogle Scholar
  168. Topilina NI, Mills KV (2014) Recent advances in in vivo applications of intein-mediated protein splicing. Mob DNA 5:5. doi: 10.1186/1759-8753-5-5 PubMedPubMedCentralCrossRefGoogle Scholar
  169. Trapani I, Colella P, Sommella A et al (2013) Effective delivery of large genes to the retina by dual AAV vectors. EMBO Mol Med 6:194–211. doi: 10.1002/emmm.201302948 PubMedPubMedCentralGoogle Scholar
  170. Truong D-JJ, Kühner K, Kühn R, Werfel S, Engelhardt S, Wurst W, Ortiz O (2015) Development of an intein-mediated split–Cas9 system for gene therapy. Nucleic Acids Res 43:6450–6458. doi: 10.1093/nar/gkv601 PubMedPubMedCentralCrossRefGoogle Scholar
  171. Venail F, Wang J, Ruel J et al (2006) Coxsackie adenovirus receptor and ανβ3/ανβ5 integrins in adenovirus gene transfer of rat cochlea. Gene Ther 14:30–37. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  172. Verpy E, Leibovici M, Zwaenepoel I, Liu XZ, Gal A, Salem N, Slim R (2000) A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies Usher syndrome type 1C. Nat Genet 26:51–55. doi: 10.1038/79171 PubMedCrossRefGoogle Scholar
  173. Wagenaar TR, Tolstykh T, Shi C, Jiang L, Zhang J, Li Z, Yu Q, Qu H, Sun F, Cao H, Pollard J (2015) Identification of the endosomal sorting complex required for transport-I (ESCRT-I) as an important modulator of anti-miR uptake by cancer cells. Nucleic Acids Res 43(2):1204–1215. doi: 10.1093/nar/gku1367 PubMedCrossRefGoogle Scholar
  174. Walsh T, Walsh V, Vreugde S, Hertzano R, Shahin H, Haika S, Avraham KB (2002) From flies’ eyes to our ears: mutations in a human class III myosin cause progressive nonsyndromic hearing loss DFNB30. Proc Natl Acad Sci 99:7518–7523. doi: 10.1073/pnas.102091699 PubMedPubMedCentralCrossRefGoogle Scholar
  175. Wan G, Corfas G, Stone JS (2013) Inner ear supporting cells: rethinking the silent majority. Semin Cell Dev Biol 24:448–459. doi: 10.1016/j.semcdb.2013.03.009 PubMedPubMedCentralCrossRefGoogle Scholar
  176. Wang A, Liang Y, Fridell RA, Probst FJ, Wilcox ER, Touchman JW, Friedman TB (1998) Association of unconventional myosin MYO15 mutations with human nonsyndromic deafness DFNB3. Science 280:1447–1451PubMedCrossRefGoogle Scholar
  177. Wang Q, Dong B, Firrman J et al (2014) Efficient production of dual recombinant adeno-associated viral vectors for factor VIII delivery. Hum Gene Ther Methods 25:261–268. doi: 10.1089/hgtb.2014.093 PubMedPubMedCentralCrossRefGoogle Scholar
  178. Wang Y, Sun Y, Chang Q et al (2013) Early postnatal virus inoculation into the scala media achieved extensive expression of exogenous green fluorescent protein in the inner ear and preserved auditory brainstem response thresholds. J Gene Med 15:123–133. doi: 10.1002/jgm.2701 PubMedCrossRefGoogle Scholar
  179. Wangemann P (2006) Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. J Physiol 576:11–21. doi: 10.1113/jphysiol.2006.112888 PubMedPubMedCentralCrossRefGoogle Scholar
  180. Wangemann P, Schacht J (1996) Homeostatic mechanisms in the cochlea. In: The cochlea. Springer, New York, pp 130–185CrossRefGoogle Scholar
  181. Wanisch K, Yáñez-Muñoz RJ (2009) Integration-deficient lentiviral vectors: a slow coming of age. Mol Ther 17:1316–1332. doi: 10.1038/mt.2009.122 PubMedPubMedCentralCrossRefGoogle Scholar
  182. Wei Y, Fu Y, Liu S, Xia G, Pan S (2013) Effect of lentiviruses carrying enhanced green fluorescent protein injected into the scala media through a cochleostomy in rats. Am J Otolaryngol 34:301–307. doi: 10.1016/j.amjoto.2012.12.011 PubMedCrossRefGoogle Scholar
  183. Wolfs JM, DaSilva M, Meister SE, Wang X, Schild-Poulter C, Edgell DR (2014) MegaTevs: single-chain dual nucleases for efficient gene disruption. Nucleic Acids Res 42:8816–8829. doi: 10.1093/nar/gku573 PubMedPubMedCentralCrossRefGoogle Scholar
  184. Yagi M, Kanzaki S, Kawamoto K, Shin B, Shah PP, Magal E, Raphael Y (2000) Spiral ganglion neurons are protected from degeneration by GDNF gene therapy. J Assoc Res Otolaryngol 1:315–325. doi: 10.1007/s101620010011 PubMedPubMedCentralGoogle Scholar
  185. Yamasoba T, Yagi M, Roessler BJ, Miller JM, Raphael Y (1999) Inner ear transgene expression after adenoviral vector inoculation in the endolymphatic sac. Hum Gene Ther 10(5):769–774PubMedCrossRefGoogle Scholar
  186. Yan J, Pan L, Chen X, Wu L, Zhang M (2010) The structure of the harmonin/sans complex reveals an unexpected interaction mode of the two Usher syndrome proteins. Proc Natl Acad Sci 107:4040–4045. doi: 10.1073/pnas.0911385107 PubMedPubMedCentralCrossRefGoogle Scholar
  187. Yan Z, Lei-Butters DCM, Zhang Y, Zak R, Engelhardt JF (2007) Hybrid adeno-associated virus bearing nonhomologous inverted terminal repeats enhances dual-vector reconstruction of minigenes in vivo. Hum Gene Ther 18:81–87. doi: 10.1089/hum.2006.128 PubMedPubMedCentralCrossRefGoogle Scholar
  188. Yang G, Si-Tayeb K, Corbineau S et al (2013a) Integration-deficient lentivectors: an effective strategy to purify and differentiate human embryonic stem cell-derived hepatic progenitors. BMC Biol 11:86. doi: 10.1186/1741-7007-11-86 PubMedPubMedCentralCrossRefGoogle Scholar
  189. Yang J, Cong N, Han Z, Huang Y, Chi F (2013b) Ectopic hair cell-like cell induction by Math1 mainly involves direct transdifferentiation in neonatal mammalian cochlea. Neurosci Lett 549:7–11. doi: 10.1016/j.neulet.2013.04.053 PubMedCrossRefGoogle Scholar
  190. Yang J, Zhou W, Zhang Y, Zidon T, Ritchie T, Engelhardt JF (1999) Concatamerization of adeno-associated virus circular genomes occurs through intermolecular recombination. J Virol 73:9468–9477. doi: 10.1128/JVI.79.11.6801-6807.2005 PubMedPubMedCentralGoogle Scholar
  191. Yang SM, Chen W, Guo WW, Jia S, Sun JH, Liu HZ, Young WY, He DZ (2012) Regeneration of stereocilia of hair cells by forced Atoh1 expression in the adult mammalian cochlea. PLoS One 7:e46355. doi: 10.1371/journal.pone.0046355 PubMedPubMedCentralCrossRefGoogle Scholar
  192. Yasunaga SI, Grati MH, Cohen-Salmon M, El-Amraoui A, Mustapha M, Salem N, Petit C (1999) A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness. Nat Genet 21:363–369. doi: 10.1038/7693 PubMedCrossRefGoogle Scholar
  193. Yu CY, Yuan Z, Cao Z, Wang B, Qiao C, Li J, Xiao X (2009) A muscle-targeting peptide displayed on AAV2 improves muscle tropism on systemic delivery. Gene Ther 16:953–962. doi: 10.1038/gt.2009.59 PubMedPubMedCentralCrossRefGoogle Scholar
  194. Yu Q, Wang Y, Chang Q, Wang J, Gong S, Li H, Lin X (2014) Virally expressed connexin 26 restores gap junction function in the cochlea of conditional Gjb2 knockout mice. Gene Ther 21:71–80. doi: 10.1038/gt.2013.59 PubMedCrossRefGoogle Scholar
  195. Zanin MP, Hellström M, Shepherd RK, Harvey AR, Gillespie LN (2014) Development of a cell-based treatment for long-term neurotrophin expression and spiral ganglion neuron survival. Neuroscience 277:690–699. doi: 10.1016/j.neuroscience.2014.07.044 PubMedCrossRefGoogle Scholar
  196. Zamore PD, Tuschl T, Sharp PA, Bartel DP (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101(1):25–33.PubMedCrossRefGoogle Scholar
  197. Zhang Y, Bergelson JM (2005) Adenovirus receptors. J Virol 79:12125–12131PubMedPubMedCentralCrossRefGoogle Scholar
  198. Zhao Y, Wang D, Zong L, Zhao F, Guan L, Zhang P, Shi W, Lan L, Wang H, Li Q, Han B, Yang L, Jin X, Wang J, Wang J, Wang Q (2014) A novel DFNA36 mutation in TMC1 orthologous to the Beethoven (Bth) mouse associated with autosomal dominant hearing loss in a Chinese family. PLoS One 9(5):e97064.PubMedPubMedCentralCrossRefGoogle Scholar
  199. Zhou H, Ma X, Liu Y et al (2015) Linear polyethylenimine-plasmid DNA nanoparticles are ototoxic to the cultured sensory epithelium of neonatal mice. Mol Med Report 11:4381–4388CrossRefGoogle Scholar
  200. Zincarelli C, Soltys S, Rengo G, Rabinowitz JE (2008) Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 16:1073–1080. doi: 10.3892/mmr.2015.3306 PubMedCrossRefGoogle Scholar
  201. Zinn E, Pacouret S, Khaychuk V et al (2015) In silico reconstruction of the viral evolutionary lineage yields a potent gene therapy vector. Cell Rep 12:1056–1068. doi: 10.1016/j.celrep.2015.07.019 PubMedPubMedCentralCrossRefGoogle Scholar
  202. Zou B, Mittal R, Grati M, Lu Z, Shu Y, Tao Y, Feng Y, Xie D, Kong W, Yang S, Chen ZY, Liu X (2015 Sep) The application of genome editing in studying hearing loss. Hear Res 327:102–108PubMedPubMedCentralCrossRefGoogle Scholar
  203. Zuris JA, Thompson DB, Shu Y et al (2014) Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat Biotech 33:73–80CrossRefGoogle Scholar

Copyright information

© Association for Research in Otolaryngology 2017

Authors and Affiliations

  • Hena Ahmed
    • 1
  • Olga Shubina-Oleinik
    • 1
  • Jeffrey R. Holt
    • 1
    Email author
  1. 1.Departments of Otolaryngology and NeurologyF.M. Kirby Neurobiology Center Boston Children’s Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations