Skip to main content

Advertisement

Log in

Eye Movements Are Correctly Timed During Walking Despite Bilateral Vestibular Hypofunction

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Individuals with bilateral vestibular hypofunction (BVH) often report symptoms of oscillopsia (the perception that the world is bouncing or unstable) during walking. Efference copy/proprioception contributes to locomotion gaze stability in animals, sometimes inhibiting the vestibulo-ocular reflex (VOR). Gaze stability requires both adequate eye velocity and appropriate timing of eye movements. It is unknown whether eye velocity (VOR gain), timing (phase), or both are impaired for individuals with BVH during walking. Identifying the specific mechanism of impaired gaze stability can better inform rehabilitation options. Gaze stability was measured for eight individuals with severe BVH and eight healthy age- and gender-matched controls while performing a gaze fixation task during treadmill walking. Frequency response functions (FRF) were calculated from pitch eye and head velocity. A one-way ANOVA was conducted to determine group differences for each frequency bin of the FRF. Pearson correlation coefficients were calculated to determine the relationship between the real and imaginary parts of the FRF and the Oscillopsia Visual Analog Scale (oVAS) scores. Individuals with BVH demonstrated significantly lower gains than healthy controls above 0.5 Hz, but their phase was ideally compensatory for frequencies below 3 Hz. Higher oVAS scores were correlated with lower gain. Individuals with BVH demonstrated ideal timing for vertical eye movements while walking despite slower than ideal eye velocity when compared to healthy controls. Rehabilitation interventions focusing on enhancing VOR gain during walking should be developed to take advantage of the intact timing reported here. Specifically, training VOR gain while walking may reduce oscillopsia severity and improve quality of life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2

Similar content being viewed by others

References

  • Agrawal Y, Zuniga MG, Davalos-Bichara M et al (2012) Decline in semicircular canal and otolith function with age. Otol Neurotol 33:832–839

    Article  PubMed  PubMed Central  Google Scholar 

  • Agrawal Y, Bremova T, Kremmyda O, Strupp M (2013) Semicircular canal, saccular and utricular function in patients with bilateral vestibulopathy: analysis based on etiology. J Neurol 260:876–883

    Article  PubMed  Google Scholar 

  • Agrawal Y, Schubert MC, Migliaccio AA et al (2014) Evaluation of quantitative head impulse testing using search coils versus video-oculography in older individuals. Otol Neurotol 35:283–288

    Article  PubMed  PubMed Central  Google Scholar 

  • Aickin M, Gensler H (1996) Adjusting for multiple testing when reporting research results: the Bonferroni vs Holm methods. Am J Public Health 86:726–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arshian MS, Hobson CE, Catanzaro MF et al (2014) Vestibular nucleus neurons respond to hindlimb movement in the decerebrate cat. J Neurophysiol 111:2423–2432. doi:10.1152/jn.00855.2013

    Article  PubMed  PubMed Central  Google Scholar 

  • Badaracco C, Labini FS, Meli A, Tufarelli D (2010) Oscillopsia in labyrinthine defective patients: comparison of objective and subjective measures. Am J Otolaryngol-Head Neck Med Surg 31:399–403. doi:10.1016/j.amjoto.2009.06.002

    Google Scholar 

  • Bartl K, Lehnen N, Kohlbecher S, Schneider E (2009) Head impulse testing using video-oculography. Ann N Y Acad Sci 1164:331–333

    Article  PubMed  Google Scholar 

  • Bendat J, Piersol A (2000) Random data: analysis and measurement procedures, 3rd edn. Wiley, New York

    Google Scholar 

  • Bhansali SA, Stockwell CW, Bojrab DI (1993) Oscilopsia in patients with loss of vestibular function. Otolaryngol-Head Neck Surg 109:120–125

    Article  CAS  PubMed  Google Scholar 

  • Brantberg K, Löfqvist L (2007) Preserved vestibular evoked myogenic potentials (VEMP) in some patients with walking-induced oscillopsia due to bilateral vestibulopathy. J Vestib Res 17:33–38

    PubMed  Google Scholar 

  • Chagnaud BP, Banchi R, Simmers J, Straka H (2015) Spinal corollary discharge modulates motion sensing during vertebrate locomotion. Nat Commun 6:7982. doi:10.1038/ncomms8982

    Article  PubMed  PubMed Central  Google Scholar 

  • Chim D, Lasker DM, Migliaccio AA (2013) Visual contribution to the high-frequency human angular vestibulo-ocular reflex. Exp Brain Res 230:127–135. doi:10.1007/s00221-013-3635-9

    Article  CAS  PubMed  Google Scholar 

  • Combes D, Le Ray D, Lambert FM et al (2008) An intrinsic feed-forward mechanism for vertebrate gaze stabilization. Curr Biol 18:R241–R243. doi:10.1016/j.cub.2008.02.018

    Article  CAS  PubMed  Google Scholar 

  • Crawford J (1964) Living without a balancing mechanism. Br J Ophthalmol 48:357–360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Della Santina CC, Cremer PD, Carey JP, Minor LB (2002) Comparison of head thrust test with head autorotation test reveals that the vestibulo-ocular reflex is enhanced during voluntary head movements. Arch Otolaryngol Head Neck Surg 128:1044–1054

    Article  PubMed  Google Scholar 

  • Dickstein R, Laufer Y (2004) Light touch and center of mass stability during treadmill locomotion. Gait Posture 20:41–47

    Article  PubMed  Google Scholar 

  • Dowiasch S, Marx S, Einhäuser W, Bremmer F (2015) Effects of aging on eye movements in the real world. Front Hum Neurosci 9:46. doi:10.3389/fnhum.2015.00046

    Article  PubMed  PubMed Central  Google Scholar 

  • Einhäuser W, Moeller GU, Schumann F et al (2009) Eye-head coordination during free exploration in human and cat. Ann N Y Acad Sci 1164:353–366. doi:10.1111/j.1749-6632.2008.03709.x

    Article  PubMed  Google Scholar 

  • Fadaee SB, Migliaccio AA (2016) The effect of retinal image error update rate on human vestibulo-ocular reflex gain adaptation. Exp Brain Res 234:1085–1094. doi:10.1007/s00221-015-4535-y

    Article  PubMed  Google Scholar 

  • Ferris FL, Kassoff A, Bresnick GH, Bailey I (1982) New visual acuity charts for clinical research. Am J Ophthalmol 94:91–96

    Article  PubMed  Google Scholar 

  • Fetter M (2007) Vestibulo-ocular reflex. Dev Ophthalmol 40:35–51

    Article  PubMed  Google Scholar 

  • Grossman GE, Leigh RJ (1990) Instability of gaze during walking in patients with deficient vestibular function. Ann Neurol 27:528–532

    Article  CAS  PubMed  Google Scholar 

  • Grossman GE, Leigh RJ, Bruce EN et al (1989) Performance of the human vestibuloocular reflex during locomotion. J Neurophysiol 62:264–272

    CAS  PubMed  Google Scholar 

  • Grunfeld EA, Morland AB, Bronstein AM et al (2000) Adaptation to oscillopsia a psychophysical and questionnaire investigation. Brain 123:277–290

    Article  PubMed  Google Scholar 

  • Guinand N, Pijnenburg M, Janssen M, Kingma H (2012) Visual acuity while walking and oscillopsia severity in healthy subjects and patients with unilateral and bilateral vestibular function loss. Arch Otolaryngol Head Neck Surg 138:301–306

    Article  PubMed  Google Scholar 

  • Herdman SJ, Schubert MC, Tusa RJ (2001) Role of central preprogramming in dynamic visual acuity with vestibular loss. Arch Otolaryngol Head Neck Surg 127:1205–1210

    Article  CAS  PubMed  Google Scholar 

  • Herdman SJ, Hall CD, Schubert MC et al (2007) Recovery of dynamic visual acuity in bilateral vestibular hypofunction. Arch Otolaryngol Head Neck Surg 133:383–389. doi:10.1001/archotol.133.4.383

    Article  PubMed  Google Scholar 

  • Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70

    Google Scholar 

  • Kiemel T, Elahi AJ, Jeka JJ (2008) Identification of the plant for upright stance in humans: multiple movement patterns from a single neural strategy. J Neurophysiol 100:3394–3406. doi:10.1152/jn.01272.2007

    Article  PubMed  PubMed Central  Google Scholar 

  • King OS, Seidman SH, Leigh RJ (1992) Control of head stability and gaze during locomotion in normal subjects and patients with deficient vestibular function. In: Berthoz A, Graf W, Vidal P-P (eds) The head-neck sensory motor system. Oxford University Press, New York, pp 568–570

    Chapter  Google Scholar 

  • Leigh RJ, Brandt T (1993) A reevaluation of the vestibulo-ocular reflex: new ideas of its purpose, properties, neural substrate, and disorders. Neurology 43:1288–1295

    Article  CAS  PubMed  Google Scholar 

  • Lencer R, Trillenberg P (2008) Neurophysiology and neuroanatomy of smooth pursuit in humans. Brain Cogn 68:219–228. doi:10.1016/j.bandc.2008.08.013

    Article  PubMed  Google Scholar 

  • Li C, Layman AJ, Carey JP, Agrawal Y (2015) Epidemiology of vestibular evoked myogenic potentials: data from the Baltimore Longitudinal Study of Aging. Clin Neurophysiol 126:2207–2215

    Article  PubMed  PubMed Central  Google Scholar 

  • Lucieer F, Vonk P, Guinand N et al (2016) Bilateral vestibular hypofunction: insights in etiologies, clinical subtypes, and diagnostics. Front Neurol 7:26. doi:10.3389/fneur.2016.00026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantokoudis G, Schubert MC, Tehrani ASS et al (2014) Early adaptation and compensation of clinical vestibular responses after unilateral vestibular deafferentation surgery. Otol Neurotol 35:148–154

    Article  PubMed  Google Scholar 

  • Mantokoudis G, Saber Tehrani AS, Kattah JC et al (2015) Quantifying the vestibulo-ocular reflex with video-oculography: nature and frequency of artifacts. Audiol Neurotol 20:39–50. doi:10.1159/000362780

    Article  Google Scholar 

  • McCall AA, Moy JD, Puterbaugh SR et al (2013) Responses of vestibular nucleus neurons to inputs from the hindlimb are enhanced following a bilateral labyrinthectomy. J Appl Physiol 114:742–751

    Article  PubMed  PubMed Central  Google Scholar 

  • McGath JH, Barber HO, Stoyanoff S (1989) Bilateral vestibular loss and oscillopsia. J Otolaryngol 18:218–221

    CAS  PubMed  Google Scholar 

  • McGibbon CA, Palmer T, Goldvasser D, Krebs DE (2001) Kalman filter detection of blinks in video-oculography: applications for VVOR measurement during locomotion. J Neurosci Methods 106:171–178

    Article  CAS  PubMed  Google Scholar 

  • Patla AE, Vickers JN (2003) How far ahead do we look when required to step on specific locations in the travel path during locomotion? Exp Brain Res 148:133–138. doi:10.1007/s00221-002-1246-y

    Article  PubMed  Google Scholar 

  • Pozzo T, Berthoz A, Lefort L, Vitte E (1991) Head stabilization during various locomotor tasks in humans. II. Patients with bilateral peripheral vestibular deficits. Exp Brain Res 85:208–217

    Article  CAS  PubMed  Google Scholar 

  • Sadeghi SG, Minor LB, Cullen KE (2012) Neural correlates of sensory substitution in vestibular pathways following complete vestibular loss. J Neurosci 32:14685–14695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider E, Villgrattner T, Vockeroth J et al (2009) EyeSeeCam: an eye movement-driven head camera for the examination of natural visual exploration. Ann N Y Acad Sci 1164:461–467. doi:10.1111/j.1749-6632.2009.03858.x

    Article  PubMed  Google Scholar 

  • Schubert MC, Zee DS (2010) Saccade and vestibular ocular motor adaptation. Restor Neurol Neurosci 28:9–18. doi:10.3233/RNN-2010-0523.Saccade

    PubMed  PubMed Central  Google Scholar 

  • Schubert MC, Herdman SJ, Tusa RJ (2002) Vertical dynamic visual acuity in normal subjects and patients with vestibular hypofunction. Otol Neurotol 23:372–377

    Article  PubMed  Google Scholar 

  • Schubert MC, Migliaccio AA, Della Santina CC (2006) Modification of compensatory saccades after aVOR gain recovery. J Vestib Res 16:285–291

    PubMed  PubMed Central  Google Scholar 

  • Schubert MC, Della Santina CC, Shelhamer M (2008) Incremental angular vestibulo-ocular reflex adaptation to active head rotation. Exp Brain Res 191:435–446. doi:10.1007/s00221-008-1537-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Shanidze N, Kim AH, Loewenstein S et al (2010) Eye-head coordination in the guinea pig II. Responses to self-generated (voluntary) head movements. Exp Brain Res 205:445–453. doi:10.1007/s00221-010-2375-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solomon D, Cohen B (1992) Stabilization of gaze during circular locomotion in darkness. II. Contribution of velocity storage to compensatory eye and head nystagmus in the running monkey. J Neurophysiol 67:1158–1170

    CAS  PubMed  Google Scholar 

  • Ward BK, Agrawal Y, Hoffman HJ et al (2013) Prevalence and impact of bilateral vestibular hypofunction: results from the 2008 US National Health Interview Survey. JAMA Otolaryngol Head Neck Surg 139:803–810

    Article  PubMed  PubMed Central  Google Scholar 

  • Wist ER, Brandt T, Krafczyk S (1983) Oscillopsia and retinal slip evidence supporting a clinical test. Brain 106:153–168

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks to Amy Bastian, PT, PhD, for sharing lab and equipment space for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric R. Anson.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Source of Funding

This work was supported in part by PODS Scholarships from the Foundation for Physical Therapy, Inc. (E Anson, PI); a Wylie Dissertation Fellowship from the University of Maryland Graduate School (E Anson, PI); the University of Maryland’s Department of Kinesiology Graduate Student Research Initiative Fund (E Anson, PI); and National Institutes of Health grant R21 AG041714-01A1 (J Jeka, PI). For the remaining authors, none were declared.

Additional information

A version of this manuscript has been published in electronic form as a dissertation chapter in fulfillment of doctoral degree requirements under copyright by E Anson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anson, E.R., Kiemel, T., Carey, J.P. et al. Eye Movements Are Correctly Timed During Walking Despite Bilateral Vestibular Hypofunction. JARO 18, 591–600 (2017). https://doi.org/10.1007/s10162-017-0626-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-017-0626-8

Keywords

Navigation