Skip to main content

The Binaural Interaction Component in Barn Owl (Tyto alba) Presents few Differences to Mammalian Data

Abstract

The auditory brainstem response (ABR) is an evoked potential that reflects the responses to sound by brainstem neural centers. The binaural interaction component (BIC) is obtained by subtracting the sum of the monaural ABR responses from the binaural response. Its latency and amplitude change in response to variations in binaural cues. The BIC is thus thought to reflect the activity of binaural nuclei and is used to non-invasively test binaural processing. However, any conclusions are limited by a lack of knowledge of the relevant processes at the level of individual neurons. The aim of this study was to characterize the ABR and BIC in the barn owl, an animal where the ITD-processing neural circuits are known in great detail. We recorded ABR responses to chirps and to 1 and 4 kHz tones from anesthetized barn owls. General characteristics of the barn owl ABR were similar to those observed in other bird species. The most prominent peak of the BIC was associated with nucleus laminaris and is thus likely to reflect the known processes of ITD computation in this nucleus. However, the properties of the BIC were very similar to previously published mammalian data and did not reveal any specific diagnostic features. For example, the polarity of the BIC was negative, which indicates a smaller response to binaural stimulation than predicted by the sum of monaural responses. This is contrary to previous predictions for an excitatory-excitatory system such as nucleus laminaris. Similarly, the change in BIC latency with varying ITD was not distinguishable from mammalian data. Contrary to previous predictions, this behavior appears unrelated to the known underlying neural delay-line circuitry. In conclusion, the generation of the BIC is currently inadequately understood and common assumptions about the BIC need to be reconsidered when interpreting such measurements.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

References

  • Beutelmann R, Laumen G, Tollin D, Klump GM (2015) Amplitude and phase equalization of stimuli for click evoked auditory brainstem responses. J Acoust Soc Am 137:EL71–EL77. doi:10.1121/1.4903921

    Article  PubMed  Google Scholar 

  • Brand A, Behrend O, Marquardt T, et al. (2002) Precise inhibition is essential for microsecond interaural time difference coding. Nature 417:543–547. doi:10.1038/417543a

    CAS  Article  PubMed  Google Scholar 

  • Brittan-Powell EF, Dooling RJ, Gleich O (2002) Auditory brainstem responses in adult budgerigars (Melopsittacus undulatus). J Acoust Soc Am 112:999. doi:10.1121/1.1494807

    Article  PubMed  Google Scholar 

  • Brittan-Powell EF, Lohr B, Hahn DC, Dooling RJ (2005) Auditory brainstem responses in the eastern screech owl: an estimate of auditory thresholds. J Acoust Soc Am 118:314. doi:10.1121/1.1928767

    Article  PubMed  Google Scholar 

  • Calford MB, Piddington RW (1988) Avian interaural canal enhances interaural delay. J Comp Physiol A 162:503–510. doi:10.1007/BF00612515

    Article  Google Scholar 

  • Calvo C, Moiseff A (1992) Neural correlates of interaural time processing in the auditory evoked potentials of the barn owl. Soc Neurosci Abstr 18:149

    Google Scholar 

  • Calvo C, Moiseff A (1993) Monitoring of the binaural interaction in the immature barn owl. Soc Neurosci Abstr 19:531

    Google Scholar 

  • Carr CE, Konishi M (1990) A circuit for detection of interaural time differences in the brain stem of the barn owl. J Neurosci 10:3227–3246

    CAS  PubMed  Google Scholar 

  • Carr CE, Köppl C (2004) Coding interaural time differences at low best frequencies in the barn owl. J Physiol 98:99–112. doi:10.1016/j.jphysparis.2004.03.003

    Google Scholar 

  • Dobie RA, Berlin CI (1979) Binaural interaction in brainstem-evoked responses. Arch Otolaryngol - Head Neck Surg 105:391–398. doi:10.1001/archotol.1979.00790190017004

    CAS  Article  Google Scholar 

  • Fobel O, Dau T (2004) Searching for the optimal stimulus eliciting auditory brainstem responses in humans. J Acoust Soc Am 116:2213–2222. doi:10.1121/1.1787523

    Article  PubMed  Google Scholar 

  • Furst M, Eyal S, Korczyn AD (1990) Prediction of binaural click lateralization by brainstem auditory evoked potentials. Hear Res 49:347–359. doi:10.1016/0378-5955(90)90113-4

    CAS  Article  PubMed  Google Scholar 

  • Gaumond RP, Psaltikidou M (1991) Models for the generation of the binaural difference response. J Acoust Soc Am 89:454–456

    CAS  Article  PubMed  Google Scholar 

  • Goksoy C, Demirtas S, Yagcioglu S, Ungan P (2005) Interaural delay-dependent changes in the binaural interaction component of the Guinea pig brainstem responses. Brain Res 1054:183–191. doi:10.1016/j.brainres.2005.06.083

    CAS  Article  PubMed  Google Scholar 

  • Goldberg JM, Brown PB (1968) Functional organization of the dog superior olivary complex: an anatomical and electrophysiological study. J Neurophysiol 31:639–656

    CAS  PubMed  Google Scholar 

  • Goldberg JM, Brown PB (1969) Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. J Neurophysiol 32:613–636

    CAS  PubMed  Google Scholar 

  • Goldwyn JH, Mc Laughlin M, Verschooten E, et al. (2014) A model of the medial superior olive explains spatiotemporal features of local field potentials. J Neurosci 34:11705–11722. doi:10.1523/JNEUROSCI.0175-14.2014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Granzow M, Riedel H, Kollmeier B (2001) Single-sweep-bades methods to improve the quality of auditory brain stem responses part I: optimized linear filtering. Z Audiol 40:32–44

    Article  Google Scholar 

  • Grothe B (2000) The evolution of temporal processing in the medial superior olive, an auditory brainstem structure. Prog Neurobiol 61:581–610

    CAS  Article  PubMed  Google Scholar 

  • Grothe B, Pecka M (2014) The natural history of sound localization in mammals: a story of neuronal inhibition. Front Neural Circuits 8:1–19. doi:10.3389/fncir.2014.00116

    Article  Google Scholar 

  • Grothe B, Pecka M, McAlpine D (2010) Mechanisms of sound localization in mammals. Physiol Rev 90:983–1012. doi:10.1152/physrev.00026.2009

    CAS  Article  PubMed  Google Scholar 

  • Huang CM, Buchwald JS (1978) Factors that affect the amplitudes and latencies of the vertex short latency acoustic responses in the cat. Electroencephalogr Clin Neurophysiol 44:179–186

    CAS  Article  PubMed  Google Scholar 

  • Jeffress LA (1948) A place theory of sound localization. J Comp Physiol Psychol 41:35–39

    CAS  Article  PubMed  Google Scholar 

  • Jones SJ, Van der Poel JC (1990) Binaural interaction in the brain-stem auditory evoked potential: evidence for a delay line coincidence detection mechanism. Electroencephalogr Clin Neurophysiol Potentials Sect 77:214–224. doi:10.1016/0168-5597(90)90040-K

    CAS  Article  Google Scholar 

  • Joris PX, Yin TC (1995) Envelope coding in the lateral superior olive. I Sensitivity to interaural time differences J Neurophysiol 73:1043–1062

    CAS  PubMed  Google Scholar 

  • Karino S, Smith PH, Yin TC, et al. (2011) Axonal branching patterns as sources of delay in the mammalian auditory brainstem: a re-examination. J Neurosci 31:3016–3031

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Konishi M (2003) Coding of auditory space. Annu Rev Neurosci 26:31–55. doi:10.1146/annurev.neuro.26.041002.131123

    CAS  Article  PubMed  Google Scholar 

  • Köppl C (1997a) Phase locking to high frequencies in the auditory nerve and cochlear nucleus magnocellularis of the barn owl, Tyto alba. J Neurosci 17:3312–3321

    PubMed  Google Scholar 

  • Köppl C (1997b) Frequency tuning and spontaneous activity in the auditory nerve and cochlear nucleus magnocellularis of the barn owl Tyto alba. J Neurophysiol 77:364–377

    PubMed  Google Scholar 

  • Köppl C, Carr CE (2008) Maps of interaural time difference in the chicken’s brainstem nucleus laminaris. Biol Cybern 98:541–559. doi:10.1007/s00422-008-0220-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Köppl C, Gleich O (2007) Evoked cochlear potentials in the barn owl. J Comp Physiol A Neuroethol Sensory, Neural, Behav Physiol 193:601–612. doi:10.1007/s00359-007-0215-0

    Article  Google Scholar 

  • Kubke MF, Massoglia DP, Carr CE (2004) Bigger brains or bigger nuclei? Regulating the size of auditory structures in birds. Brain Behav Evol 63:169–180. doi:10.1159/000076242

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuokkanen PT, Wagner H, Ashida G, et al. (2010) On the origin of the extracellular field potential in the nucleus laminaris of the barn owl (Tyto alba). J Neurophysiol 104:2274–2290. doi:10.1152/jn.00395.2010

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuokkanen PT, Ashida G, Carr CE, et al. (2013) Linear summation in the barn owl’s brainstem underlies responses to interaural time differences. J Neurophysiol 110:117–130. doi:10.1152/jn.00410.2012

    Article  PubMed  PubMed Central  Google Scholar 

  • Larsen O, Dooling R, Ryals BM (1997) Roles of intracranial air pressure in bird audition. In: Lewis ER, Long GR, Lyon RF, Narins PM, Steele CR, Hecht-Poinar E (eds) Diversity in auditory mechanics. World Scientific, Singapore, pp. 11–17

    Google Scholar 

  • Laumen G, Ferber AT, Klump GM, Tollin DJ (2016a) The physiological basis and clinical use of the binaural interaction component of the auditory brainstem response. Ear Hear doi. doi:10.1097/AUD.0000000000000301

    Google Scholar 

  • Laumen G, Tollin DJ, Beutelmann R, Klump GM (2016b) Aging effects on the binaural interaction component of the auditory brainstem response in the Mongolian gerbil: effects of interaural time and level differences. Hear Res 337:46–58. doi:10.1016/j.heares.2016.04.009

    Article  PubMed  Google Scholar 

  • Manley GA, Köppl C, Konishi M (1988) A neural map of interaural intensity differences in the brain stem of the barn owl. J Neurosci 8:2665–2676

    CAS  PubMed  Google Scholar 

  • McColgan T, Shah S, Koppl C, et al. (2014) A functional circuit model of interaural time difference processing. J Neurophysiol 112:2850–2864. doi:10.1152/jn.00484.2014

    Article  PubMed  PubMed Central  Google Scholar 

  • McPherson DL, Starr A (1993) Binaural interaction in auditory evoked potentials: brainstem, middle- and long-latency components. Hear Res 66:91–98. doi:10.1016/0378-5955(93)90263-Z

    CAS  Article  PubMed  Google Scholar 

  • Melcher JR (1996) Cellular generators of the binaural difference potential in cat. Hear Res 95:144–160. doi:10.1016/0378-5955(96)00032-9

    CAS  Article  PubMed  Google Scholar 

  • Moiseff A, Konishi M (1983) Binaural characteristics of units in the owl’s brainstem auditory pathway: precursors of restricted spatial receptive fields. J Neurosci 3:2553–2562

    CAS  PubMed  Google Scholar 

  • Myoga MH, Lehnert S, Leibold C, Felmy F, Grothe B (2014) Glycinergic inhibition tunes coincidence detection in the auditory brainstem. Nat Commun 5:3790

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Ohmori H (2014) Neuronal specializations for the processing of interaural difference cues in the chick. Front Neural Circuits 8:47. doi:10.3389/fncir.2014.00047

    Article  PubMed  PubMed Central  Google Scholar 

  • Overholt EM, Rubel EW, Hyson RL (1992) A circuit for coding interaural time differences in the chick brainstem. J Neurosci 12:1698–1708

    CAS  PubMed  Google Scholar 

  • Palanca-Castan N, Köppl C (2015) In vivo recordings from low-frequency nucleus laminaris in the barn owl. Brain Behav Evol 85:271–286. doi:10.1159/000433513

    Article  PubMed  Google Scholar 

  • Pecka M, Brand A, Behrend O, Grothe B (2008) Interaural time difference processing in the mammalian medial superior olive: the role of glycinergic inhibition. J Neurosci 28:6914–6925. doi:10.1523/JNEUROSCI.1660-08.2008

    CAS  Article  PubMed  Google Scholar 

  • Peña JL, Viete S, Albeck Y, Konishi M (1996) Tolerance to sound intensity of binaural coincidence detection in the nucleus laminaris of the owl. J Neurosci 16:7046–7054

    PubMed  Google Scholar 

  • Pratt H, Polyakov A, Aharonson V, et al. (1998) Effects of localized pontine lesions on auditory brain-stem evoked potentials and binaural processing in humans. Electroencephalogr Clin Neurophysiol 108:511–520

    CAS  Article  PubMed  Google Scholar 

  • Riedel H, Kollmeier B (2002a) Auditory brain stem responses evoked by lateralized clicks: is lateralization extracted in the human brain stem? Hear Res 163:12–26. doi:10.1016/S0378-5955(01)00362-8

    Article  PubMed  Google Scholar 

  • Riedel H, Kollmeier B (2002b) Comparison of binaural auditory brainstem responses and the binaural difference potential evoked by chirps and clicks. Hear Res 169:85–96. doi:10.1016/S0378-5955(02)00342-8

    Article  PubMed  Google Scholar 

  • Riedel H, Granzow M, Kollmeier B (2001) Single-sweep-based methods to improve the quality of auditory brain stem responses part II: averaging methods. Zeitschrift für Audiol 40:62–85

    Google Scholar 

  • Roberts MT, Seeman SC, Golding NL (2013) A mechanistic understanding of the role of feedforward inhibition in the mammalian sound localization circuitry. Neuron 78:923–935. doi:10.1016/j.neuron.2013.04.022

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Takahashi TT, Konishi M (1988) Projections of nucleus angularis and nucleus laminaris to the lateral lemniscal nuclear complex of the barn owl. J Comp Neurol 274:212–238. doi:10.1002/cne.902740207

    CAS  Article  PubMed  Google Scholar 

  • Tollin DJ (2003) The lateral superior olive: a functional role in sound source localization. Neuroscientist 9:127–143

    Article  PubMed  Google Scholar 

  • Tollin DJ, Yin TCT (2005) Interaural phase and level difference sensitivity in low-frequency neurons in the lateral superior olive. J Neurosci 25:10648–10657. doi:10.1523/JNEUROSCI.1609-05.2005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Ungan P, Yagcioglu S (2002) Origin of the binaural interaction component in wave P4 of the short-latency auditory evoked potentials in the cat: evaluation of serial depth recordings from the brainstem. Hear Res 167:81–101. doi:10.1016/S0378-5955(02)00351-9

    Article  PubMed  Google Scholar 

  • Ungan P, Yagcioglu S, Özmen B (1997) Interaural delay-dependent changes in the binaural difference potential in cat auditory brainstem response: implications about the origin of the binaural interaction component. Hear Res 106:66–82. doi:10.1016/S0378-5955(97)00003-8

    CAS  Article  PubMed  Google Scholar 

  • van der Heijden M, Lorteije JAM, Plauška A, et al. (2013) Directional hearing by linear summation of binaural inputs at the medial superior olive. Neuron 78:936–948. doi:10.1016/j.neuron.2013.04.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wada S, Starr A (1989) Anatomical bases of binaural interaction in auditory brainstem responses from guinea pig

  • Wada SI, Starr A (1983a) Generation of auditory brain stem responses (ABRs). I. Effects of injection of a local anesthetic (procaine HCI) into the trapezoid body of Guinea pigs and cat. Electroencephalogr Clin Neurophysiol 56:326–339

    CAS  Article  PubMed  Google Scholar 

  • Wada SI, Starr A (1983b) Generation of auditory brain stem responses (ABRs). III. Effects of lesions of the superior olive, lateral lemniscus and inferior colliculus on the ABR in Guinea pig. Electroencephalogr Clin Neurophysiol 56:352–366

    CAS  Article  PubMed  Google Scholar 

  • Wada SI, Starr A (1983c) Generation of auditory brain stem responses (ABRs). II. Effects of surgical section of the trapezoid body on the ABR in Guinea pigs and cat. Electroencephalogr Clin Neurophysiol 56:340–351

    CAS  Article  PubMed  Google Scholar 

  • Wernick JS, Starr A (1968) Binaural interaction in the superior olivary complex of the cat: an analysis of field potentials evoked by binaural-beat stimuli. J Neurophysiol 31:428–441

    CAS  PubMed  Google Scholar 

  • Young SR, Rubel EW (1983) Frequency-specific projections of individual neurons in chick brainstem auditory nuclei. J Neurosci 3:1373–1378

    CAS  PubMed  Google Scholar 

  • Zaaroor M, Starr A (1991) Auditory brain-stem evoked potentials in cat after kainic acid induced neuronal loss. I. Superior olivary complex. Electroencephalogr Clin Neurophysiol 80:422–435

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by the Deutsche Forschungsgemeinschaft (CRC/TRR31 “Active Hearing” and Cluster of Excellence “Hearing4All”). We thank Rainer Beutelmann for his technical assistance. Georg Klump provided invaluable input early in the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Palanca-Castan.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Palanca-Castan, N., Laumen, G., Reed, D. et al. The Binaural Interaction Component in Barn Owl (Tyto alba) Presents few Differences to Mammalian Data. JARO 17, 577–589 (2016). https://doi.org/10.1007/s10162-016-0583-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-016-0583-7

Keywords

  • Binaural interaction component
  • Barn owl
  • Binaural processing
  • Auditory brainstem response
  • Interaural time differences