Skip to main content
Log in

QTL Mapping of Endocochlear Potential Differences between C57BL/6J and BALB/cJ mice

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

We reported earlier that the endocochlear potential (EP) differs between C57BL/6J (B6) and BALB/cJ (BALB) mice, being lower in BALBs by about 10 mV (Ohlemiller et al. Hear Res 220: 10–26, 2006). This difference corresponds to strain differences with respect to the density of marginal cells in cochlear stria vascularis. After about 1 year of age, BALB mice also tend toward EP reduction that correlates with further marginal cell loss. We therefore suggested that early sub-clinical features of the BALB stria vascularis may predispose these mice to a condition modeling Schuknecht’s strial presbycusis. We further reported (Ohlemiller et al. J Assoc Res Otolaryngol 12: 45–58, 2011) that the acute effects of a 2-h 110 dB SPL noise exposure differ between B6 and BALB mice, such that the EP remains unchanged in B6 mice, but is reduced by 40–50 mV in BALBs. In about 25 % of BALBs, the EP does not completely recover, so that permanent EP reduction may contribute to noise-induced permanent threshold shifts in BALBs. To identify genes and alleles that may promote natural EP variation as well as noise-related EP reduction in BALB mice, we have mapped related quantitative trait loci (QTLs) using 12 recombinant inbred (RI) strains formed from B6 and BALB (CxB1–CxB12). EP and strial marginal cell density were measured in B6 mice, BALB mice, their F1 hybrids, and RI mice without noise exposure, and 1–3 h after broadband noise (4–45 kHz, 110 dB SPL, 2 h). For unexposed mice, the strain distribution patterns for EP and marginal cell density were used to generate preliminary QTL maps for both EP and marginal cell density. Six QTL regions were at least statistically suggestive, including a significant QTL for marginal cell density on chromosome 12 that overlapped a weak QTL for EP variation. This region, termed Maced (Marginal cell density QTL) supports the notion of marginal cell density as a genetically influenced contributor to natural EP variation. Candidate genes for Maced notably include Foxg1, Foxa1, Akap6, Nkx2-1, and Pax9. Noise exposure produced significant EP reductions in two RI strains as well as significant EP increases in two RI strains. QTL mapping of the EP in noise-exposed RI mice yielded four suggestive regions. Two of these overlapped with QTL regions we previously identified for noise-related EP reduction in CBA/J mice (Ohlemiller et al. Hear Res 260: 47–53, 2010) on chromosomes 5 and 18 (Nirep). The present map may narrow the Nirep interval to a ~10-Mb region of proximal Chr. 18 that includes Zeb1, Arhgap12, Mpp7, and Gjd4. This study marks the first exploration of natural gene variants that modulate the EP. Their orthologs may underlie some human hearing loss that originates in the lateral wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  • Abraira VE, Satoh T, Fekete DM, Goodrich LV (2010) Vertebrate Lrig3-ErbB interactions occur in vitro but are unlikely to play a role in Lrig3-dependent inner ear morphogenesis. PLoS One 5, e8981

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adams JC (2009) Immunocytochemical traits of type IV fibrocytes and their possible relations to cochlear function and pathology. J Assoc Res Otolaryngol 10:369–382

    Article  PubMed  PubMed Central  Google Scholar 

  • Ahmad M, Bohne BA, Harding GW (2003) An in vivo tracer study of noise-induced damage to the reticular lamina. Hear Res 175:82–100

    Article  PubMed  Google Scholar 

  • Alsaber R, Tabone C, Kandpal R (2006) Predicting candidate genes for human deafness disorders: a bioinformatics approach. BMC Genomics 7:180

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Axelsson A, Lindgren F (1985) Is there a relationship between hypercholesterolemia and noise-induced hearing loss? Acta Otolaryngol 100:379–386

    Article  CAS  PubMed  Google Scholar 

  • Bahloul A, Simmler M-C, Michel V, Leibovici M, Perfettini I, Roux I, Weil D, Nouaille S, Zuo J, Zadro C, Licastro D, Gasparini P, Avan P, Hardelin J-P, Petit C (2009) Vezatin, an integral membrane protein of adherens junctions, is required for the sound resilience of cochlear cells. EMBO Mol Med 1:125–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bell D, Streit A, Gorospe I, Varela-Nieto I, Alsina B, Giraldez F (2008) Spatial and temporal segregation of auditory and vestibular neurons in the otic placode. Dev Biol 322:109–120

    Article  CAS  PubMed  Google Scholar 

  • Ben-Yosef T, Belyantseva IA, Saunders TL, Hughes ED, Kawamoto K, Van Itallie CM, Beyer LA, Halsey K, Gardner DJ, Wilcox ER, Rasmussen J, Anderson JM, Dolan DF, Forge A, Raphael Y, Camper SA, Friedman TB (2003) Claudin 14 knockout mice, a model for autosomal recessive deafness DFNB29, are deaf due to cochlear hair cell degeneration. Hum Mol Genet 12:2049–2061

    Article  CAS  PubMed  Google Scholar 

  • Berndt H, Wagner H (1979) Influence of thyroid state and improved hypoxia tolerance on noise-induced cochlea damage. Eur Arch Otorhinolaryngol 224:125–128

    Article  CAS  Google Scholar 

  • Bohnenpoll T, Trowe M-O, Wojahn I, Taketo MM, Petry M, Kispert A (2014) Canonical Wnt signaling regulates the proliferative expansion and differentiation of fibrocytes in the murine inner ear. Dev Biol 391:54–65

    Article  CAS  PubMed  Google Scholar 

  • Braunstein EM, Monks DC, Aggarwal VS, Arnold JS, Morrow BE (2009) Tbx1 and Brn4 regulate retinoic acid metabolic genes during cochlear morphogenesis. BMC Dev Biol 9:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bryda EC, Johnson NT, Ohlemiller KK, Besch-Williford CL, Moore E, Bram RJ (2012) Conditional deletion of calcium-modulating cyclophilin ligand causes deafness in mice. Mamm Genome 23:270–276

    Article  CAS  PubMed  Google Scholar 

  • Cai Q, Patel M, Coling DE, Hu BH (2012) Transcriptional changes in adhesion-related genes are site-specific during noise-induced cochlear pathogenesis. Neurobiol Dis 45:723–732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaplin JW, Kasahara S, Clark EA, Ledbetter JA (2009) CD180 is a positive regulator of TLR signals in B cells. J Immunol 182:135–164

    Google Scholar 

  • Chatterjee S, Kraus P, Lufkin T (2010) A symphony of inner ear developmental control genes. BMC Genet 11:68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cirillo LA, Zaret KS (2007) Specific interactions of the wing domains of FOXA1 transcription factor with DNA. J Mol Biol 366:720–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conlee JW, Abdul-Baqi KJ, McCandless GA, Creel DJ (1986) Differential susceptibility to noise-induced permanent threshold shift between albino and pigmented guinea pigs. Hear Res 23:81–91

    Article  CAS  PubMed  Google Scholar 

  • Conlee JW, Abdul-Baqi KJ, McCandless GA, Creel DJ (1988) Effects of aging on normal hearing loss and noise-induced threshold shift in albino and pigmented guinea pigs. Acta Otolaryngol 106:64–70

    Article  CAS  PubMed  Google Scholar 

  • Crumling MA, Liu L, Thomas PV, Benson J, Kanicki A, Kabara L, Halsey K, Dolan DF, Duncan RK (2012) Hearing loss and hair cell death in mice given the cholesterol-chelating agent hydroxypropyl-beta-cyclodextrin. PLoS One 7:12

    Article  CAS  Google Scholar 

  • Cryns K, Thys S, Van Laer L, Oka Y, Pfister M, Van Nassauw L, Smith RJH, Timmermans J-P, Van Camp G (2003) The WFS1 gene, responsible for low frequency sensorineural hearing loss and Wolfram syndrome, is expressed in a variety of inner ear cells. Histochem Cell Biol 119:247–256

    CAS  PubMed  Google Scholar 

  • Diaz RC, Vazquez AE, Dou H, Wei D, Cardell EL, Lingrel J, Shull GE, Doyle KJ, Yamoah EN (2007) Conservation of hearing by simultaneous mutation of Na, K-ATPase and NKCCl. J Assoc Res Otolaryngol 8:422–434

    Article  PubMed  PubMed Central  Google Scholar 

  • Diviani D, Maric D, López IP, Cavin S, del Vescovo CD (2013) A-kinase anchoring proteins: molecular regulators of the cardiac stress response. Biochim Biophys Acta Mol Cell Res 1833:901–908

    Article  CAS  Google Scholar 

  • Dong H, Zhang P, Song I, Petralia RS, Liao D, Huganir RL (1999) Characterization of the glutamate receptor-interacting proteins GRIP1 and GRIP2. J Neurosci Methods 19:6930–6941

    CAS  Google Scholar 

  • Dunn KJ, Williams BO, Li Y, Pavan WJ (2000) Neural crest-directed gene transfer demonstrates Wnt1 role in melanocyte expansion and differentiation during mouse development. Proc Natl Acad Sci U S A 97:10050–10055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duvall AJ, Ward WD, Lauhala KE (1974) Stria ultrastructure and vessel transport in acoustic trauma. Ann Otol Rhinol Laryngol 83:498–514

    PubMed  Google Scholar 

  • Erway LC, Willott JF, Archer JR, Harrison DE (1993) Genetics of age-related hearing loss in mice: I. Inbred and F1 hybrid strains. Hear Res 65:125–132

    Article  CAS  PubMed  Google Scholar 

  • Fujinami Y, Mutai H, Kamiya K, Mizutari K, Fujii M, Matsunaga T (2012) Enhanced expression of C/EBP homologous protein (CHOP) precedes degeneration of fibrocytes in the lateral wall after acute cochlear mitochondrial dysfunction induced by 3-nitropropionic acid. Neurochem Int 56:487–494

    Article  CAS  Google Scholar 

  • Furukawa Y, Kawasoe T, Daigo Y, Nishiwaki T, Ishiguro H, Takahashi M, Kitayama J, Nakamura Y (2001) Isolation of a novel human gene, ARHGAP9 encoding a Rho-GTPase activating protein. Biochem Biophys Res Commun 284:643–649

    Article  CAS  PubMed  Google Scholar 

  • Garland P, Quraishe S, French P, O'Connor V (2008) Expression of the MAST family of serine/threonine kinases. Brain Res Rev 1195:12–19

    Article  CAS  Google Scholar 

  • Gratton MA, Eleftheriadou A, Garcia J, Verduzco E, Martin GK, Lonsbury–Martin BL, Vázquez AE (2011) Noise-induced changes in gene expression in the cochleae of mice differing in their susceptibility to noise damage. Hear Res 2011:211–226

    Article  CAS  Google Scholar 

  • Han F, Zhang H, Gu L (2005) Expression and its significance of aquaporins in normal guinea pig inner ears. J Clin Otorhinolaryngol 19:10

    Google Scholar 

  • Hao X, Xing Y, Moore MW, Zhang J, Han D, Schulte BA, Dubno JR, Lang H (2014) Sox10 expressing cells in the lateral wall of the aged mouse and human cochlea. PLoS One 9, e97389

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hertzano R, Elkon R, Kurima K, Morrisson A, Chan S-L, Sallin M, Biedlingmaier A, Darling DS, Griffith AJ, Eisenman DJ, Strome SE (2011) Cell type-specific transcriptome analysis reveals a major role for Zeb1 and miR-200b in mouse inner ear morphogenesis. PLoS One 7, e1002309

    CAS  Google Scholar 

  • Hibino H, Nin F, Tsuzuki C, Kurachi Y (2010) How is the highly positive endocochlear potential formed? The specific architecture of the stria vascularis and the roles of the ion-transport apparatus. Pflugers Arch Eur J Physiol 459:521–533

    Article  CAS  Google Scholar 

  • Hirose K, Liberman MC (2003) Lateral wall histopathology and endocochlear potential in the noise-damaged mouse cochlea. J Assoc Res Otolaryngol 4:339–352

    Article  PubMed  PubMed Central  Google Scholar 

  • Hitzemann R, Bell J, Rasmussen E, McCaughran J (2001) Chapter 21. Mapping the genes for the acoustic startle response (ASR) and prepulse inhibition of the ASR in the BxD recombinant inbred series: Effect of high-frequency hearing loss and cochlear pathology. In: Willott JF (ed) Handbook of mouse auditory research: from behavior to molecular biology. CRC Press, Boca Raton, pp 441–455

    Google Scholar 

  • Hjeij R, Lindstrand A, Francis R, Zariwala MA, Liu X, Li Y, Damerla R, Dougherty GW, Abouhamed M, Olbrich H, Loges NT, Pennekamp P, Davis EE, Carvalho CMB, Pehlivan D, Werner C, Raidt J, Kohler G, Haffner K, Reyes-Mugica M, Lupski JR, Leigh MW, Rosenfeld M, Morgan LC, Knowles MR, Lo CW, Katsanis N, Omran H (2013) ARMC4 mutations cause primary ciliary dyskinesia with randomization of left/right body asymmetry. Am J Med Genet 93:357–367

    CAS  Google Scholar 

  • Holt JR, Corey DP (1999) Ion channel defects in hereditary hearing loss. Neuron 22:217–219

    Article  CAS  PubMed  Google Scholar 

  • Housley GD, Morton-Jones R, Vlajkovic SM, Telang RS, Paramanthasivam V, Tadros SF, Wong ACY, Froud KE, Cederholm JME, Sivakumaran Y, Snguanwongchai P, Khakh BS, Cockayne DA, Thorne PR, Ryan AF (2013) ATP-gated ion channels mediate adaptation to elevated sound levels. Proc Natl Acad Sci U S A 110:7494–7499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howard BA (2012) In the beginning: the establishment of the mammary lineage during embryogenesis. Semim Cell Dev Biol 23:574–582

    Article  CAS  Google Scholar 

  • Hoya N, Okamoto Y, Kamiya K, Fujii M, Matsunaga T (2004) A novel animal model of acute cochlear mitochondrial dysfunction. Neuroreport 15:1597–1600

    Article  CAS  PubMed  Google Scholar 

  • Hughes I, Thalmann I, Thalmann R, Ornitz DM (2006) Mixing model systems: using zebrafish and mouse inner ear mutants and other organ systems to unravel the mystery of otoconial development. Brain Res 1091:58–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ide M, Morimitsu T (1990) Long term effects of intense sound on endocochlear DC potential. Auris Nasus Larynx 17:1–10

    Article  CAS  PubMed  Google Scholar 

  • Ikeda K, Kusakari J, Takasaka T (1988) Ionic changes in cochlear endolymph of the guinea pig induced by acoustic injury. Hear Res 32:103–110

    Article  CAS  PubMed  Google Scholar 

  • Johnson KR, Zheng QY, Erway LC (2000) A major gene affecting age-related hearing loss is common to at least 10 inbred strains of mice. Genomics 70:171–180

    Article  CAS  PubMed  Google Scholar 

  • Johnson KR, Longo-Guess CM, Gagnon LH (2012) Mutations of the mouse ELMO domain containing 1 gene (Elmod1) link small GTPase signaling to actin cytoskeleton dynamics in hair cell stereocilia. PLoS One 7, e36074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang C, Tian C, SoÌnnichsen FD, Smith JA, Meiler J, George AL Jr, Vanoye CG, Kim HJ, Sanders CR (2008) Structure of KCNE1 and implications for how it modulates the KCNQ1 potassium channel. Biochemistry 47:7999–8006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazmierczak M, Harris SL, Kazmierczak P, Shah P, Starovoytov V, Ohlemiller KK, Schwander M (2015) Progressive hearing loss in mice carrying a mutation in Usp53. J Neurosci 35:15582–15598

    Article  CAS  PubMed  Google Scholar 

  • Kim H-J, Oh G-S, Lee J-H, Lyu A-R, Ji H-M, Lee S-H, Song J, Park S-J, You Y-O, Sul J-D, Park C, Chung S-Y, Moon S-K, Lim DJ, So H-S, Park R (2011) Cisplatin ototoxicity involves cytokines and STAT6 signaling network. Cell Res 21:944–956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim KX, Sanneman JD, Kim H-M, Harbidge DG, Xu J, Soleimani M, Wangemann P, Marcus DC (2014) Slc26a7 chloride channel activity and localization in mouse Reissner's membrane epithelium. PLoS One 9, e97191

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kitajiri S-I, Fukumoto K, Hata M, Sasaki H, Katsuno T, Nakagawa T, Ito J, Tsukita S, Tsukita S (2004) Radixin deficiency causes deafness associated with progressive degeneration of cochlear stereocilia. J Cell Biol 166:559–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitajiri S-I, Katsuno T, Sasaki H, Ito J, Furuse M, Tsukita S (2014) Deafness in occludin-deficient mice with dislocation of tricellulin and progressive apoptosis of the hair cells. Biology Open, BIO20147799

  • Kobayashi T, Aslan A, Chiba T, Takasaka T, Sanna M (1996) Measurement of endocochlear DC potentials in ears with acoustic neuromas: a preliminary report. Acta Otolaryngol 116:791–795

    Article  CAS  PubMed  Google Scholar 

  • Kohonen A, Jauhiainen T, Liewendahl K, Tarkkanen J, Kaimio M (1971) Deafness in experimental hypo- and hyperthyroidism. Laryngoscope 81:947–956

    Article  CAS  PubMed  Google Scholar 

  • Konishi T, Salt AN, Hamrick PE (1979) Effects of exposure to noise on ion movement in guinea pig cochlea. Hear Res 1:325–342

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Chiba T, Marcus DC (2001) P2X2 receptor mediates stimulation of parasensory cation absorption by cochlear outer sulcus cells and vestibular transitional cells. J Neurosci 21:9168–9174

    CAS  PubMed  Google Scholar 

  • Leonova EV, Fairfield DA, Lomax MI, Altschuler RA (2002) Constitutive expression of Hsp27 in the rat cochlea. Hear Res 163:61–70

    Article  CAS  PubMed  Google Scholar 

  • Melichar I, Syka J, Ulehlova L (1980) Recovery of the endocochlear potential and the K+ concentrations in the cochlear fluids after acoustic trauma. Hear Res 2:55–63

    Article  CAS  PubMed  Google Scholar 

  • Meltser I, Tahera Y, Simpson EM, Hultcrantz M, Charitidi K, Gustafsson J-A, Canlon B (2008) Estrogen receptor B protects against acoustic trauma in mice. J Clin Investig 118:1563–1570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer zum Gottesberge AM, Massing T, Hansen S (2012) Missing mitochondrial Mpv17 gene function induces tissue-specific dell-death pathway in the degenerating inner ear. Cell Tissue Res 347:343–356

    Article  CAS  PubMed  Google Scholar 

  • Mitchem KL, Hibbard E, Beyer LA, Bosom K, Dootz GA, Dolan DF, Johnson KR, Raphael Y, Kohrman DC (2002) Mutation of the novel gene Tmie results in sensory cell defects in the inner ear of spinner, a mouse model of human hearing loss DFNB6. Hum Mol Genet 11:1887–1898

    Article  CAS  PubMed  Google Scholar 

  • Mockett BG, Housley GD, Thorne PR (1994) Fluorescence imaging of extracellular purinergic sites and putative ecto-ATPase sites on isolated cochlear hair cells. J Neurosci 14:1692–1707

    Google Scholar 

  • Morozko EL, Nishio A, Ingham NJ, Chandra R, Fitzgerald T, Martelletti E, Borck G, Wilson E, Riordan GP, Wangemann P, Forge A, Steel KP, Liddle RA, Friedman TB, Belyantseva IA (2014) ILDR1 null mice, a model of human deafness DFNB42, show structural aberrations of tricellular tight junctions and degeneration of auditory hair cells. Hum Mol Genet 24(3):609–624

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nagashima R, Yamaguchi T, Tanaka H, Ogita K (2010) Mechanism underlying the protective effect of tempol and Nw-Nitro-L-Arginine Methyl Ester on acoustic injury: possible involvement of c-Jun N-Terminal Kinase pathway and Connexin26 in the cochlear spiral ligament. J Pharmacol 114:50–62

    CAS  Google Scholar 

  • Nagtegaal AP, Spijker S, Crins TTH, Borst JGG (2012) A novel QTL underlying early-onset, low-frequency hearing loss in BXD recombinant inbred strains. Genes Brain Behav 11:911–920

    CAS  PubMed  Google Scholar 

  • Nakano Y, Kim SH, Kim H-M, Sanneman JD, Zhang Y, Smith RJH, Marcus DC, Wangemann P, Nessler RA, Banfi B (2009) A claudin-9-based ion permeability barrier is essential for hearing. PLoS Genet 5, e1000610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nayak G, Lee SI, Yousaf R, Edelmann SE, Trincot C, Van Itallie CM, Sinha GP, Rafeeq M, Jones SM, Belyantseva IA, Anderson JM, Forge A, Frolenkov G, Riazuuddin S (2013) Tricellulin deficiency affects tight junction architecture and cochlear hair cells. J Clin Investig 123:4036–4049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nemoto M, Morita Y, Mishima Y, Takahashi S, Nomura T, Ushiki T, Shiroishi T, Kikkawa Y, Yonekawa H, Kominami R (2004) Ahl3, a third locus on mouse chromosome 17 affecting age-related hearing loss. Biochem Biophys Res Commun 324:1283–1288

    Article  CAS  PubMed  Google Scholar 

  • Nie L, Xu T, Mo J, Zhang Y, Feng W, Vazquez AE, Morris K, Beisel K, Yamoah EN (2006) Molecular cloning and functional study of KCNQ4 channels in the mouse inner ear. FASEB J 20:A1368

    Google Scholar 

  • Nin F, Hibino H, Doi KS, Suzuki T, Hisa Y, Kurachi Y (2008) The endocochlear potential depends on two K+ diffusion potentials and an electrical barrier in the stria vascularis of the inner ear. Proc Natl Acad Sci U S A 105:1751–1756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noben-Trauth K, Zheng QY, Johnson KR (2003) Association of cadherin 23 with polygenic inheritance and genetic modification of sensorineural hearing loss. Nat Genet 35:21–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noben-Trauth K, Latoche JR, Neely HR, Bennett B (2010) Phenotype and genetics of progressive sensorineural hearing loss (Snhl1) in the LXS set of recombinant inbred strains of mice. PLoS One 5, e11459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nordmann AS, Bohne BA, Harding GW (2000) Histopathological differences between temporary and permanent threshold shift. Hear Res 139:13–30

    Article  CAS  PubMed  Google Scholar 

  • Oh SH, Adler HJ, Raphael Y, Lomax MI (2002) WDR1 colocalizes with ADF and actin in the normal and noise-damaged chick cochlea. J Comp Neurol 448:399–409

    Article  CAS  PubMed  Google Scholar 

  • Ohlemiller KK (2002) Reduction in sharpness of frequency tuning but not endocochlear potential in aging and noise-exposed BALB/cJ mice. J Assoc Res Otolaryngol 3:444–456

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohlemiller KK (2009) Mechanisms and genes in human strial presbycusis from animal models. Brain Res 1277:70–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohlemiller KK, Gagnon PM (2007) Genetic dependence of cochlear cells and structures injured by noise. Hear Res 224:34–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohlemiller KK, Lett JM, Gagnon PM (2006) Cellular correlates of age-related endocochlear potential reduction in a mouse model. Hear Res 220:10–26

    Article  PubMed  Google Scholar 

  • Ohlemiller KK, Rice MR, Lett JM, Gagnon PM (2009) Absence of strial melanin coincides with age associated marginal cell loss and endocochlear potential decline. Hear Res 249:1–14

    Article  CAS  PubMed  Google Scholar 

  • Ohlemiller KK, Rosen AD, Gagnon PM (2010a) A major effect QTL on chromosome 18 for noise injury to the mouse cochlear lateral wall. Hear Res 260:47–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohlemiller KK, Dahl AR, Gagnon PM (2010b) Divergent aging characteristics in CBA/J and CBA/CaJ mouse cochleae. J Assoc Res Otolaryngol 11:605–623

    Article  PubMed  PubMed Central  Google Scholar 

  • Ohlemiller KK, Rosen AR, Rellinger EA, Montgomery SC, Gagnon PM (2011) Different cellular and genetic basis of noise-related endocochlear potential reduction in CBA/J and BALB/cJ mice. J Assoc Res Otolaryngol 12:45–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Okamoto Y, Hoya N, Kamiya K, Fujii M, Ogawa K, Matsunaga T (2005) Permanent threshold shift caused by acute cochlear mitochondrial dysfunction is primarily mediated by degeneration of the lateral wall of the cochlea. Audiol Neuro Otol 10:220–233

    Article  Google Scholar 

  • Oyamada M, Takebe K, Oyamada Y (2013) Regulation of connexin expression by transcription factors and epigenetic mechanisms. Biochim Biophys Acta Biomembr 1828:118–133

    Article  CAS  Google Scholar 

  • Pauley S, Lai E, Fritzsch B (2006) Foxg1 is required for morphogenesis and histogenesis of the mammalian inner ear. Dev Dyn 235:2470–2482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riccomagno MM, Martinu L, Mulheisen M, Wu DK, Epstein DJ (2002) Specification of the mammalian cochlea is dependent on Sonic hedgehog. Genes Dev 16:2365–2378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Royaux IE, Suzuki K, Mori A, Katoh R, Everett LA, Kohn LD, Green ED (2000) Pendrin, the protein encoded by the Pendred syndrome gene (PDS), is an apical porter of iodide in the thyroid and is regulated by thyroglobulin in FRTL-5 cells. Endocrinology 141:839–845

    Article  CAS  PubMed  Google Scholar 

  • Rudnicki A, Isakov O, Ushakov K, Shivatzki S, Weiss I, Friedman LM, Shomron N, Avraham KB (2014) Next-generation sequencing of small RNAs from inner ear sensory epithelium identifies microRNAs and defines regulatory pathways. BMC Genomics 15:484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salt AN, Konishi T (1979) Effects of noise on cochlear potentials and endolymph potassium concentrations recorded with ion-selective electrodes. Hear Res 1:343–363

    Article  CAS  PubMed  Google Scholar 

  • Schmiedt RA (1993) Cochlear potentials in quiet-aged gerbils: does the aging cochlea need a jump start? In: Verillo RT (ed) Sensory research: multimodal perspectives. Lawrence Erlbaum, Hillsdale, pp 91–103

    Google Scholar 

  • Schuknecht HF, Gacek MR (1993) Cochlear pathology in presbycusis. Ann Otol Rhinol Laryngol 102:1–16

    Article  CAS  PubMed  Google Scholar 

  • Schuknecht HF, Watanuki K, Takahashi T, Belal AA, Kimura RS, Jones DD (1974) Atrophy of the stria vascularis, a common cause for hearing loss. Laryngoscope 84:1777–1821

    Article  CAS  PubMed  Google Scholar 

  • Selvakumar D, Drescher MJ, Dowdall JR, Khan KM, Hatfield JS, Ramakrishnan NA, Drescher DG (2012) CNGA3 is expressed in inner ear hair cells and binds to an intracellular C-terminus domain of EMILIN1. Biochem J 443:463–476

    Article  CAS  PubMed  Google Scholar 

  • Sewell W (1984) The effects of furosemide on the endocochlear potential and auditory nerve fiber tuning curves in cats. Hear Res 14:305–314

    Article  CAS  PubMed  Google Scholar 

  • Spicer SS, Schulte BA (2005) Pathologic changes of presbycusis begin in secondary processes and spread to primary processes of strial marginal cells. Hear Res 205:225–240

    Article  PubMed  Google Scholar 

  • Spiess AC, Lang H, Schulte BA, Spicer SS, Schmiedt RA (2002) Effects of gap junction uncoupling in the gerbil cochlea. Laryngoscope 112:1635–1641

    Article  CAS  PubMed  Google Scholar 

  • Summers KM, Bokil NJ, Lu FT, Low JT, Baisden JM, Duffy D, Radford DJ (2010) Mutations at KCNQ1 and an unknown locus cause long QT syndrome in a large Australian family: implications for genetic testing. Am J Med Genet A 152:613–621

    Article  CAS  Google Scholar 

  • Takumida M, Takumida S, Anniko M (2014) Localization of sirtuins in the mouse inner ear. Acta Otolaryngol 134:331–338

    Article  CAS  PubMed  Google Scholar 

  • Tran Ba Huy P, Ferrary E, Roinel N (1989) Electrochemical and clinical observations in 11 cases of Meniere's disease. In: Nadol JB (ed) Meniere's disease. Kugler and Ghedini, Amsterdam, pp 241–246

    Google Scholar 

  • Ulehlova L (1983) Stria vascularis in acoustic trauma. Arch Otorhinolaryngol 237:133–138

    Article  CAS  PubMed  Google Scholar 

  • Varma S, Cao Y, Tagne J-B, Lakshminarayanan M, Li J, Friedman TB, Morell RJ, Warburton D, Kotton DN, Ramirez MI (2012) The transcription factors Grainyhead-like 2 and NK2-homeobox 1 form a regulatory loop that coordinates lung epithelial cell morphogenesis and differentiation. J Biol Chem 287:37282–37295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vassout P (1984) Effects of pure tone on endocochlear potential and potassium ion concentration in the guinea pig cochlea. Acta OtoLaryngol 98:199–203

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Lufkin T (2005) Hmx homeobox gene function in inner ear and nervous system cell-type specification and development. Exp Cell Res 306:373–379

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Li Q, Dong W, Chen J (1992) Effects of various noise exposures on endocochlear potentials correlated with cochlear gross responses. Hear Res 59:31–38

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Hirose K, Liberman MC (2002) Dynamics of noise-induced cellular injury and repair in the mouse cochlea. J Assoc Res Otolaryngol 3:248–268

    Article  PubMed  PubMed Central  Google Scholar 

  • Wangemann P (2006) Supporting sensory transduction: cochlear fluid homeostasis and the endocochlear potential. J Physiol 576(1):11–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe K, Takeda K, Katori Y, Ikeda K, Oshima T, Yasumoto K, Saito H, Takasaka T, Shibahara S (2000) Expression of the Sox10 gene during mouse inner ear development. Mol Brain Res 84:141–145

    Article  CAS  PubMed  Google Scholar 

  • Willott JF, Turner JG, Carlson S, Ding D, Bross LS, Falls WA (1998) The BALB/c mouse as an animal model for progressive sensorineural hearing loss. Hear Res 115:162–174

    Article  CAS  PubMed  Google Scholar 

  • Xiao S-M, Kung AWC, Gao Y, Lau KS, Ma A, Zhang ZL, Liu JM, Xia W, He J-W, Zhao L, Nie M, Fu WZ, Zhang MJ, Sun J, Kwan JSH, Tso GHW, Dai ZJ, Cheung CL, Bow CH, Leung AYH, Tan KCB, Sham PC (2012) Post-genome wide association studies and functional analyses identify association of MPP7 gene variants with site-specific bone mineral density. Hum Mol Genet 21:1648–1657

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Zhao X, Xu Y, Wang L, He A, Lundberg YW (2011) Matrix recruitment and calcium sequestration for spatial specific otoconia development. PLoS One 6, e20498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Drs. R.J. Morell (NIDCD) and A.N. Salt (WUSM Dept. Otolaryngology) for comments on the manuscript. Thanks also to Drs. K.R. Johnson (JAX) and R.W. Williams (U. Tennessee Health Sciences Center) for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin K. Ohlemiller.

Ethics declarations

Funding Agencies

Supported by NIH R01 DC03454 and DC08321 (KKO), P30 DC04665 (R. Chole), NIH T35 DC008765 (W.W. Clark), and Washington University Medical School Department of Otolaryngology.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

(XLS 89 kb)

Table S2

(XLS 89 kb)

Table S3

(XLS 120 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohlemiller, K.K., Kiener, A.L. & Gagnon, P.M. QTL Mapping of Endocochlear Potential Differences between C57BL/6J and BALB/cJ mice. JARO 17, 173–194 (2016). https://doi.org/10.1007/s10162-016-0558-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-016-0558-8

Keywords

Navigation