Tuning to Binaural Cues in Human Auditory Cortex

  • Susan A. McLaughlin
  • Nathan C. Higgins
  • G. Christopher Stecker
Research Article


Interaural level and time differences (ILD and ITD), the primary binaural cues for sound localization in azimuth, are known to modulate the tuned responses of neurons in mammalian auditory cortex (AC). The majority of these neurons respond best to cue values that favor the contralateral ear, such that contralateral bias is evident in the overall population response and thereby expected in population-level functional imaging data. Human neuroimaging studies, however, have not consistently found contralaterally biased binaural response patterns. Here, we used functional magnetic resonance imaging (fMRI) to parametrically measure ILD and ITD tuning in human AC. For ILD, contralateral tuning was observed, using both univariate and multivoxel analyses, in posterior superior temporal gyrus (pSTG) in both hemispheres. Response-ILD functions were U-shaped, revealing responsiveness to both contralateral and—to a lesser degree—ipsilateral ILD values, consistent with rate coding by unequal populations of contralaterally and ipsilaterally tuned neurons. In contrast, for ITD, univariate analyses showed modest contralateral tuning only in left pSTG, characterized by a monotonic response-ITD function. A multivoxel classifier, however, revealed ITD coding in both hemispheres. Although sensitivity to ILD and ITD was distributed in similar AC regions, the differently shaped response functions and different response patterns across hemispheres suggest that basic ILD and ITD processes are not fully integrated in human AC. The results support opponent-channel theories of ILD but not necessarily ITD coding, the latter of which may involve multiple types of representation that differ across hemispheres.


auditory space fMRI ILD ITD hemispheric asymmetry interaural differences 



The authors thank Jeff Stevenson, Baochang Chu, and Ken Maravilla for assistance with fMRI data collection; Andrew Brown and Geoff Boynton for helpful comments during the design phase; Jacqueline Bibee for assistance with signal denoising; and three anonymous reviewers for helpful comments on earlier versions of the manuscript. This work was supported by National Institutes of Health—National Institute on Deafness and Other Communication Disorders (NIDCD: R03-DC009482-02S1, T32-DC005361, and R01-DC011548). The content is solely the responsibility of the authors and does not represent the official views of the NSF, NIDCD, or the National Institutes of Health. Portions of this work appeared in the first author’s Ph.D. dissertation (McLaughlin 2013).

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. Aguirre GK (2007) Continuous carry-over designs for fMRI. Neuroimage 35(4):1480–1494PubMedCentralCrossRefPubMedGoogle Scholar
  2. Ahveninen J, Jääskeläinen IP, Raij T, Bonmassar G, Devore S, Hämäläinen M, Levänen S, Lin F-H, Sams M, Shinn-Cunningham BG, Witzel T, Belliveau JW (2006) Task-modulated “what” and “where” pathways in human auditory cortex. Proc Natl Acad Sci U S A 103(39):14608–14613PubMedCentralCrossRefPubMedGoogle Scholar
  3. Altman JA, Balonov LJ, Deglin VL (1979) Effects of unilateral disorder of the brain hemisphere function in man on directional hearing. Neuropsychologia 17(3–4):295–301CrossRefPubMedGoogle Scholar
  4. Altmann CF, Terada S, Kashino M, Goto K, Mima T, Fukuyama H, Furukawa S (2014) Independent or integrated processing of interaural time and level differences in human auditory cortex? Hear Res 312:121–127CrossRefPubMedGoogle Scholar
  5. Baumann S, Petkov CI, Griffiths TD (2013) A unified framework for the organization of the primate auditory cortex. Front Syst Neurosci 7:11PubMedCentralCrossRefPubMedGoogle Scholar
  6. Beckmann CF, Smith SM (2004) Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Trans Med Imaging 23(2):137–152CrossRefPubMedGoogle Scholar
  7. Belliveau LAC, Lyamzin DR, Lesica NA (2014) The neural representation of interaural time differences in gerbils is transformed from midbrain to cortex. J Neurosci 34(50):16796–16808PubMedCentralCrossRefPubMedGoogle Scholar
  8. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc B 57(1):289–300Google Scholar
  9. Bisiach E, Cornacchia L, Sterzi R, Vallar G (1984) Disorders of perceived auditory lateralization after lesions of the right hemisphere. Brain 107(Pt 1):37–52CrossRefPubMedGoogle Scholar
  10. Blauert J (1983) Spatial hearing. MIT Press, CambridgeGoogle Scholar
  11. Boester L (1994) Binaural time and intensity discrimination following unilateral auditory cortex ablation in Japanese macaques (Macaca fuscata). Master’s thesis, University of Toledo, ToledoGoogle Scholar
  12. Briley PM, Kitterick PT, Summerfield AQ (2013) Evidence for opponent process analysis of sound source location in humans. J Assoc Res Otolaryngol 14(1):83–101PubMedCentralCrossRefPubMedGoogle Scholar
  13. Brungart DS, Rabinowitz WM (1999) Auditory localization of nearby sources: head-related transfer functions. J Acoust Soc Am 106(3 Pt 1):1465–1479CrossRefPubMedGoogle Scholar
  14. Campbell RAA, Schnupp JWH, Shial A, King AJ (2006) Binaural-level functions in ferret auditory cortex: evidence for a continuous distribution of response properties. J Neurophysiol 95(6):3742–3755CrossRefPubMedGoogle Scholar
  15. Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58(3):306–324PubMedCentralCrossRefPubMedGoogle Scholar
  16. Culling JF, Hawley ML, Litovsky RY (2004) The role of head-induced interaural time and level differences in the speech reception threshold for multiple interfering sound sources. J Acoust Soc Am 116(2):1057–1065CrossRefPubMedGoogle Scholar
  17. Deouell L, Heller A, Malach R, D’Esposito M, Knight R (2007) Cerebral responses to change in spatial location of unattended sounds. Neuron 55(6):985–996CrossRefPubMedGoogle Scholar
  18. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980CrossRefPubMedGoogle Scholar
  19. Downar J, Crawley AP, Mikulis DJ, Davis KD (2000) A multimodal cortical network for the detection of changes in the sensory environment. Nat Neurosci 3(3):277–283CrossRefPubMedGoogle Scholar
  20. Edmonds BA, Krumbholz K (2014) Are interaural time and level differences represented by independent or integrated codes in the human auditory cortex? J Assoc Res Otolaryngol 15(1):103–114PubMedCentralCrossRefPubMedGoogle Scholar
  21. Fitzpatrick DC, Kuwada S, Batra R (2000) Neural sensitivity to interaural time differences: beyond the Jeffress model. J Neurosci 20(4):1605–1615PubMedGoogle Scholar
  22. Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SC, Frackowiak RS, Turner R (1995) Analysis of fMRI time-series revisited. Neuroimage 2(1):45–53CrossRefPubMedGoogle Scholar
  23. Furukawa S, Middlebrooks JC (2002) Cortical representation of auditory space: information-bearing features of spike patterns. J Neurophysiol 87(4):1749–1762PubMedGoogle Scholar
  24. Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15(4):870–878CrossRefPubMedGoogle Scholar
  25. Griffiths T, Buchel C, Frackowiak R, Patterson R (1998) Analysis of the temporal structure of sound by the human brain. Nat Neurosci 1(5):422–427CrossRefPubMedGoogle Scholar
  26. Griffiths TD, Uppenkamp S, Johnsrude I, Josephs O, Patterson R (2001) Encoding of the temporal regularity of sound in the human brainstem. Nat Neurosci 4(6):633–637CrossRefPubMedGoogle Scholar
  27. Hackett T, Stepniewska I, Kaas J (1998) Subdivisions of auditory cortex and ipsilateral cortical connections of the parabelt auditory cortex in macaque monkeys. J Comp Neurol 394(4):475–495CrossRefPubMedGoogle Scholar
  28. Hall DA, Haggard M, Akeroyd M, Palmer AR, Summerfield AQ, Elliott M, Gurney E, Bowtell R (1999) Sparse temporal sampling in auditory fMRI. Hum Brain Mapp 7(3):213–223CrossRefPubMedGoogle Scholar
  29. Hall D, Barrett D, Akeroyd M, Summerfield A (2005) Cortical representations of temporal structure in sound. J Neurophysiol 94(5):3181–3191CrossRefPubMedGoogle Scholar
  30. Harrington IA, Stecker GC, Macpherson EA, Middlebrooks JC (2008) Spatial sensitivity of neurons in the anterior, posterior, and primary fields of cat auditory cortex. Hear Res 240:22–41PubMedCentralCrossRefPubMedGoogle Scholar
  31. Haynes J-D, Rees G (2005) Predicting the orientation of invisible stimuli from activity in human primary visual cortex. Nat Neurosci 8(5):686–690CrossRefPubMedGoogle Scholar
  32. Heffner HE (1997) The role of macaque auditory cortex in sound localization. Acta Otolaryngol Suppl 532:22–27CrossRefPubMedGoogle Scholar
  33. Higgins NC, Storace DA, Escabi MA, Read HL (2010) Specialization of binaural responses in ventral auditory cortices. J Neurosci 30(43):14522–14532PubMedCentralCrossRefPubMedGoogle Scholar
  34. Imig TJ, Adrián HO (1977) Binaural columns in the primary field (A1) of cat auditory cortex. Brain Res 138(2):241–257CrossRefPubMedGoogle Scholar
  35. Jäncke L, Wüstenberg T, Schulze K, Heinze HJ (2002) Asymmetric hemodynamic responses of the human auditory cortex to monaural and binaural stimulation. Hear Res 170(1–2):166–178CrossRefPubMedGoogle Scholar
  36. Jenkins WM, Masterton RB (1982) Sound localization: effects of unilateral lesions in central auditory system. J Neurophysiol 47(6):987–1016PubMedGoogle Scholar
  37. Johnson BW, Hautus MJ (2010) Processing of binaural spatial information in human auditory cortex: neuromagnetic responses to interaural timing and level differences. Neuropsychologia 48(9):2610–2619CrossRefPubMedGoogle Scholar
  38. Kaas J, Hackett T (2000) Subdivisions of auditory cortex and processing streams in primates. Proc Natl Acad Sci U S A 97(22):11793–11799PubMedCentralCrossRefPubMedGoogle Scholar
  39. Kamitani Y, Tong F (2005) Decoding the visual and subjective contents of the human brain. Nat Neurosci 8(5):679–685PubMedCentralCrossRefPubMedGoogle Scholar
  40. Kavanagh GL, Kelly JB (1987) Contribution of auditory cortex to sound localization by the ferret (Mustela putorius). J Neurophysiol 57(6):1746–1766PubMedGoogle Scholar
  41. Kelly RE Jr, Alexopoulos GS, Wang Z, Gunning FM, Murphy CF, Morimoto SS, Kanellopoulos D, Jia Z, Lim KO, Hoptman MJ (2010) Visual inspection of independent components: defining a procedure for artifact removal from fMRI data. J Neurosci Methods 189(2):233–245PubMedCentralCrossRefPubMedGoogle Scholar
  42. Kitzes L (2008) Binaural interactions shape binaural response structures and frequency response functions in primary auditory cortex. Hear Res 238(1–2):68–76CrossRefPubMedGoogle Scholar
  43. Krumbholz K, Schönwiesner M, von Cramon DY, Rübsamen R, Shah NJ, Zilles K, Fink GR (2005a) Representation of interaural temporal information from left and right auditory space in the human planum temporale and inferior parietal lobe. Cereb Cortex 15(3):317–324CrossRefPubMedGoogle Scholar
  44. Krumbholz K, Schönwiesner S, Rübsamen R, Zilles K, Fink G, von Cramon DY (2005b) Hierarchical processing of sound location and motion in the human brainstem and planum temporale. Eur J Neurosci 21(1):230–238CrossRefPubMedGoogle Scholar
  45. Krumbholz K, Hewson-Stoate N, Schönwiesner M (2007) Cortical response to auditory motion suggests an asymmetry in the reliance on inter-hemispheric connections between the left and right auditory cortices. J Neurophysiol 97(2):1649–1655CrossRefPubMedGoogle Scholar
  46. Kucyi A, Hodaie M, Davis KD (2012) Lateralization in intrinsic functional connectivity of the temporoparietal junction with salience- and attention-related brain networks. J Neurophysiol 108(12):3382–3392CrossRefPubMedGoogle Scholar
  47. Kuhn G (1977) Model for interaural time differences in the azimuthal plane. J Acoust Soc Am 62(157–67)Google Scholar
  48. Langers DRM, Backes WH, van Dijk P (2007) Representation of lateralization and tonotopy in primary versus secondary human auditory cortex. Neuroimage 34(1):264–273CrossRefPubMedGoogle Scholar
  49. Lau C, Zhang JW, Cheng JS, Zhou IY, Cheung MM, Wu EX (2013) Noninvasive fMRI investigation of interaural level difference processing in the rat auditory subcortex. PLoS One 8(8), e70706PubMedCentralCrossRefPubMedGoogle Scholar
  50. Licklider J (1948) The influence of interaural phase relations upon the masking of speech by white noise. J Acoust Soc Am 20(2):150–159CrossRefGoogle Scholar
  51. Lomber SG, Malhotra S, Hall AJ (2007) Functional specialization in non-primary auditory cortex of the cat: areal and laminar contributions to sound localization. Hear Res 229(1–2):31–45CrossRefPubMedGoogle Scholar
  52. Lui LL, Mokri Y, Reser DH, Rosa MGP, Rajan R (2015) Responses of neurons in the marmoset primary auditory cortex to interaural level differences: comparison of pure tones and vocalizations. Front Neurosci 9:132PubMedCentralCrossRefPubMedGoogle Scholar
  53. Macaulay EJ, Hartmann WM, Rakerd B (2010) The acoustical bright spot and mislocalization of tones by human listeners. J Acoust Soc Am 127(3):1440–1449PubMedCentralCrossRefPubMedGoogle Scholar
  54. Macpherson EA, Middlebrooks JC (2002) Listener weighting of cues for lateral angle: the duplex theory of sound localization revisited. J Acoust Soc Am 111(5 Pt 1):2219–2236CrossRefPubMedGoogle Scholar
  55. Magezi DA, Krumbholz K (2010) Evidence for opponent-channel coding of interaural time differences in human auditory cortex. J Neurophysiol 104(4):1997–2007PubMedCentralCrossRefPubMedGoogle Scholar
  56. Malhotra S, Hall AJ, Lomber SG (2004) Cortical control of sound localization in the cat: unilateral cooling deactivation of 19 cerebral areas. J Neurophysiol 92(3):1625–1643CrossRefPubMedGoogle Scholar
  57. McAlpine D, Jiang D, Palmer AR (2001) A neural code for low-frequency sound localization in mammals. Nat Neurosci 4(4):396–401CrossRefPubMedGoogle Scholar
  58. McLaughlin SA (2013) Functional magnetic resonance imaging of human auditory cortical tuning to interaural level and time differences. PhD thesis, University of WashingtonGoogle Scholar
  59. Middlebrooks JC, Bremen P (2013) Spatial stream segregation by auditory cortical neurons. J Neurosci 33(27):10986–11001PubMedCentralCrossRefPubMedGoogle Scholar
  60. Middlebrooks JC, Pettigrew JD (1981) Functional classes of neurons in primary auditory cortex of the cat distinguished by sensitivity to sound location. J Neurosci 1(1):107–120PubMedGoogle Scholar
  61. Nakamoto KT, Zhang J, Kitzes LM (2004) Response patterns along an isofrequency contour in cat primary auditory cortex (AI) to stimuli varying in average and interaural levels. J Neurophysiol 91(1):118–135CrossRefPubMedGoogle Scholar
  62. Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15(1):1–25CrossRefPubMedGoogle Scholar
  63. Nourski KV, Steinschneider M, McMurray B, Kovach CK, Oya H, Kawasaki H, Howard MA 3rd (2014) Functional organization of human auditory cortex: investigation of response latencies through direct recordings. Neuroimage 101:598–609PubMedCentralCrossRefPubMedGoogle Scholar
  64. Oldfield R (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefPubMedGoogle Scholar
  65. Palmer A, Kuwada S (2005) Binaural and spatial coding in the inferior colliculus. In: Winer JA, S. C. (eds) The inferior colliculus. Springer, New York, chapter 13, 377–410Google Scholar
  66. Palomäki KJ, Tiitinen H, Mäkinen V, May PJC, Alku P (2005) Spatial processing in human auditory cortex: the effects of 3D, ITD, and ILD stimulation techniques. Brain Res Cogn Brain Res 24(3):364–379CrossRefPubMedGoogle Scholar
  67. Patterson RD, Uppenkamp S, Johnsrude IS, Griffiths TD (2002) The processing of temporal pitch and melody information in auditory cortex. Neuron 36(4):767–776CrossRefPubMedGoogle Scholar
  68. Phillips DP, Hall SE (2005) Psychophysical evidence for adaptation of central auditory processors for interaural differences in time and level. Hear Res 202(1–2):188–199CrossRefPubMedGoogle Scholar
  69. Phillips DP, Irvine DR (1981) Responses of single neurons in physiologically defined area A1 of cat cerebral cortex: sensitivity to interaural intensity differences. Hear Res 4(3–4):299–307CrossRefPubMedGoogle Scholar
  70. Poldrack RA (2007) Region of interest analysis for fMRI. Soc Cogn Affect Neurosci 2(1):67–70PubMedCentralCrossRefPubMedGoogle Scholar
  71. Rauschecker J, Tian B (2000) Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc Natl Acad Sci U S A 97(22):11800–11806PubMedCentralCrossRefPubMedGoogle Scholar
  72. Reale RA, Brugge JF (1990) Auditory cortical neurons are sensitive to static and continuously changing interaural phase cues. J Neurophysiol 64(4):1247–1260PubMedGoogle Scholar
  73. Ruff RM, Hersh NA, Pribram KH (1981) Auditory spatial deficits in the personal and extrapersonal frames of reference due to cortical lesions. Neuropsychologia 19(3):435–443CrossRefPubMedGoogle Scholar
  74. Salminen NH (2015) Human cortical sensitivity to interaural level differences in low- and high-frequency sounds. J Acoust Soc Am 137(2):EL190–EL193CrossRefPubMedGoogle Scholar
  75. Salminen NH, Tiitinen H, Miettinen I, Alku P, May PJC (2010) Asymmetrical representation of auditory space in human cortex. Brain Res 1306:93–99CrossRefPubMedGoogle Scholar
  76. Salminen NH, Altoè A, Takanen M, Santala O, Pulkki V (2015a) Human cortical sensitivity to interaural time difference in high-frequency sounds. Hear Res 323:99–106CrossRefPubMedGoogle Scholar
  77. Salminen NH, Takanen M, Santala O, Alku P, Pulkki V (2015b) Neural realignment of spatially separated sound components. J Acoust Soc Am 137(6):3356CrossRefPubMedGoogle Scholar
  78. Salminen NH, Takanen M, Santala O, Lamminsalo J, Altoè A, Pulkki V (2015c) Integrated processing of spatial cues in human auditory cortex. Hear Res 327:143–152CrossRefPubMedGoogle Scholar
  79. Schröger E (1996) Interaural time and level differences: integrated or separated processing? Hear Res 96(1–2):191–198CrossRefPubMedGoogle Scholar
  80. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen Berg H, Bannister PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, Brady JM, Matthews PM (2004) Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage 23(Suppl 1):S208–S219CrossRefPubMedGoogle Scholar
  81. Spierer L, Bellmann-Thiran A, Maeder P, Murray MM, Clarke S (2009) Hemispheric competence for auditory spatial representation. Brain 132(Pt 7):1953–1966CrossRefPubMedGoogle Scholar
  82. Stecker GC (2010) More modeling of temporal weighting functions for interaural time and level differences. Assoc Res Otolaryngol Abs 33:831Google Scholar
  83. Stecker GC, Middlebrooks JC (2003) Distributed coding of sound locations in the auditory cortex. Biol Cybern 89(5):341–349CrossRefPubMedGoogle Scholar
  84. Stecker GC, Mickey B, Macpherson E, Middlebrooks J (2003) Spatial sensitivity in field PAF of cat auditory cortex. J Neurophysiol 89:2889–2903CrossRefPubMedGoogle Scholar
  85. Stecker GC, Harrington I, Macpherson E, Middlebrooks J (2005a) Spatial sensitivity in the dorsal zone (area DZ) of cat auditory cortex. J Neurophysiol 94(2):1267–1280CrossRefPubMedGoogle Scholar
  86. Stecker GC, Harrington IA, Middlebrooks JC (2005b) Location coding by opponent neural populations in the auditory cortex. PLoS Biol 3(3):e78PubMedCentralCrossRefPubMedGoogle Scholar
  87. Stecker GC, McLaughlin SA, Higgins NC (2015) Monaural and binaural contributions to interaural-level-difference sensitivity in human auditory cortex. NeuroimageGoogle Scholar
  88. Stevens MC, Calhoun VD, Kiehl KA (2005) Hemispheric differences in hemodynamics elicited by auditory oddball stimuli. Neuroimage 26(3):782–792PubMedCentralCrossRefPubMedGoogle Scholar
  89. Tardif E, Murray MM, Meylan R, Spierer L, Clarke S (2006) The spatiotemporal brain dynamics of processing and integrating sound localization cues in humans. Brain Res 1092(1):161–176CrossRefPubMedGoogle Scholar
  90. Thompson GC, Cortez AM (1983) The inability of squirrel monkeys to localize sound after unilateral ablation of auditory cortex. Behav Brain Res 8(2):211–216CrossRefPubMedGoogle Scholar
  91. Tiitinen H, Salminen NH, Palomäki KJ, Mäkinen VT, Alku P, May PJC (2006) Neuromagnetic recordings reveal the temporal dynamics of auditory spatial processing in the human cortex. Neurosci Lett 396(1):17–22CrossRefPubMedGoogle Scholar
  92. Trahiotis C, Stern RM (1989) Lateralization of bands of noise: effects of bandwidth and differences of interaural time and phase. J Acoust Soc Am 86(4):1285–1293CrossRefPubMedGoogle Scholar
  93. Ungan P, Yagcioglu S, Goksoy C (2001) Differences between the N1 waves of the responses to interaural time and intensity disparities: scalp topography and dipole sources. Clin Neurophysiol 112(3):485–498CrossRefPubMedGoogle Scholar
  94. von Kriegstein K, Griffiths TD, Thompson SK, McAlpine D (2008) Responses to interaural time delay in human cortex. J Neurophysiol 100(5):2712–2718CrossRefGoogle Scholar
  95. Warren JD, Griffiths TD (2003) Distinct mechanisms for processing spatial sequences and pitch sequences in the human auditory brain. J Neurosci 23(13):5799–5804PubMedGoogle Scholar
  96. Werner-Reiss U, Groh JM (2008) A rate code for sound azimuth in monkey auditory cortex: implications for human neuroimaging studies. J Neurosci 28(14):3747–3758PubMedCentralCrossRefPubMedGoogle Scholar
  97. Wise LZ, Irvine DR (1985) Topographic organization of interaural intensity difference sensitivity in deep layers of cat superior colliculus: implications for auditory spatial representation. J Neurophysiol 54(2):185–211PubMedGoogle Scholar
  98. Woldorff MG, Tempelmann C, Fell J, Tegeler C, Gaschler-Markefski B, Hinrichs H, Heinz HJ, Scheich H (1999) Lateralized auditory spatial perception and the contralaterality of cortical processing as studied with functional magnetic resonance imaging and magnetoencephalography. Hum Brain Mapp 7(1):49–66CrossRefPubMedGoogle Scholar
  99. Woods TM, Lopez SE, Long JH, Rahman JE, Recanzone GH (2006) Effects of stimulus azimuth and intensity on the single-neuron activity in the auditory cortex of the alert macaque monkey. J Neurophysiol 96(6):3323–3337CrossRefPubMedGoogle Scholar
  100. Woods D, Stecker GC, Rinne T, Herron T, Cate A, Yund EW, Liao I, Kang X (2009) Functional maps of human auditory cortex: effects of acoustic features and attention. PLoS One 4(4), e5183PubMedCentralCrossRefPubMedGoogle Scholar
  101. Yost WA, Dye RH, Sheft S (2007) Interaural time difference processing of broadband and narrow-band noise by inexperienced listeners. J Acoust Soc Am 121(3):EL103–EL109PubMedCentralCrossRefPubMedGoogle Scholar
  102. Zatorre RJ, Penhune VB (2001) Spatial localization after excision of human auditory cortex. J Neurosci 21(16):6321–6328PubMedGoogle Scholar
  103. Zhang J, Nakamoto KT, Kitzes LM (2004) Binaural interaction revisited in the cat primary auditory cortex. J Neurophysiol 91(1):101–117CrossRefPubMedGoogle Scholar

Copyright information

© Association for Research in Otolaryngology 2015

Authors and Affiliations

  • Susan A. McLaughlin
    • 1
  • Nathan C. Higgins
    • 2
  • G. Christopher Stecker
    • 2
  1. 1.Institute for Learning and Brain SciencesUniversity of WashingtonSeattleUSA
  2. 2.Department of Hearing and Speech SciencesVanderbilt University School of MedicineNashvilleUSA

Personalised recommendations