Skip to main content

Nonlinear Vibration Response Measured at Umbo and Stapes in the Rabbit Middle ear

Abstract

Using laser vibrometry and a stimulation and signal analysis method based on multisines, we have measured the response and the nonlinearities in the vibration of the rabbit middle ear at the level of the umbo and the stapes. With our method, we were able to detect and quantify nonlinearities starting at sound pressure levels of 93-dB SPL. The current results show that no significant additional nonlinearity is generated as the vibration signal is passed through the middle ear chain. Nonlinearities are most prominent in the lower frequencies (125 Hz to 1 kHz), where their level is about 40 dB below the vibration response. The level of nonlinearities rises with a factor of nearly 2 as a function of sound pressure level, indicating that they may become important at very high sound pressure levels such as those used in high-power hearing aids.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

REFERENCES

  1. Aernouts J, Soons J, Dirckx JJJ (2010) Quantification of tympanic membrane elasticity parameters from in situ point indentation measurements: validation and preliminary study. Hear Res 263:177–182. doi:10.1016/j.heares.2009.09.007

    Article  PubMed  Google Scholar 

  2. Aerts JRM, Dirckx JJJ (2010) Nonlinearity in eardrum vibration as a function of frequency and sound pressure. Hear Res 263:26–32. doi:10.1016/j.heares.2009.12.022

    CAS  Article  PubMed  Google Scholar 

  3. Buytaert J, Van der Jeught S, Ars B et al (2013) Preliminary human tympanic membrane thickness data from optical coherence tomography. In: Dirckx J, Buytaert J (eds) Optical measurement techniques for structures & systems2. Shaker Publishing, Germany, pp 75–84

  4. De Greef D, Aernouts J, Aerts J et al (2014) Viscoelastic properties of the human tympanic membrane studied with stroboscopic holography and finite element modeling. Hear Res 312:69–80. doi:10.1016/j.heares.2014.03.002

    Article  PubMed  Google Scholar 

  5. Dirckx JJJ, Decraemer WF (2001) Effect of middle ear components on eardrum quasi-static deformation. Hear Res 157:124–137. doi:10.1016/S0378-5955(01)00290-8

    CAS  Article  PubMed  Google Scholar 

  6. Dirckx JJJ, Buytaert JAN, Decraemer WF (2006) Quasi-static transfer function of the rabbit middle ear, measured with a heterodyne interferometer with high-resolution position decoder. J Assoc Res Otolaryngol 7:339–351. doi:10.1007/s10162-006-0048-5

    PubMed Central  Article  PubMed  Google Scholar 

  7. Funnell WRJ, Khanna SM, Decraemer WF (1992) On the degree of rigidity of the manubrium in a finite element model of the cat eardrum. J Acoust Soc Am 91:2082–2090

    CAS  Article  PubMed  Google Scholar 

  8. Funnell WRJ, Heng Siah T, McKee MD et al (2005) On the coupling between the incus and the stapes in the cat. J Assoc Res Otolaryngol 6:9–18. doi:10.1007/s10162-004-5016-3

    PubMed Central  Article  PubMed  Google Scholar 

  9. Goode RL, Killion MC, Nakamura K, Nishihara S (1994) New knowledge about the function of the human middle ear: development of an improved analog model. Am J Otol 15:145–154

    CAS  Article  PubMed  Google Scholar 

  10. Guinan J, Peake W (1967) Middle -ear characteristics of anesthetised cats. J Acoust Soc Am 41:1237–1261

    Article  PubMed  Google Scholar 

  11. Hato N, Stenfelt S, Goode R (2003) Three-dimensional stapes footplate motion in human temporal bones. Audiol Neurootol 8:140–152

    Article  PubMed  Google Scholar 

  12. Heffner H (1980) Hearing in Glires: domestic rabbit, cotton rat, feral house mouse, and kangaroo rat. J Acoust Soc Am 68:1584. doi:10.1121/1.385213

    Article  Google Scholar 

  13. Huber A, Linder T, Ferrazzini M et al (2001) Intraoperative assessment of stapes movement. Ann Otol Rhinol Laryngol 110:31–35

    CAS  Article  PubMed  Google Scholar 

  14. Ladak HM, Funnell WRJ, Decraemer WF, Dirckx JJJ (2006) A geometrically nonlinear finite-element model of the cat eardrum. J Acoust Soc Am 119:2859. doi:10.1121/1.2188370

    Article  PubMed  Google Scholar 

  15. Nedzelnitsky V (1980) Sound pressures in the basal turn of the cat cochlea. J Acoust Soc Am 68:1676–1689. doi:10.1121/1.385200

    CAS  Article  PubMed  Google Scholar 

  16. Peacock J, Dirckx J, von Unge M (2014) Magnetically driven middle ear ossicles with laser vibrometry as a new diagnostic tool to quantify ossicular fixation. Acta Otolaryngol 134:352–357. doi:10.3109/00016489.2013.841990

    Article  PubMed  Google Scholar 

  17. Pintelon R, Schoukens J (2013) FRF measurement of nonlinear systems operating in closed loop. IEEE Trans Instrum Meas 62:1334–1345

    Article  Google Scholar 

  18. Rhode W (2007) Distortion product otoacoustic emissions and basilar membrane vibration in the 6–9 kHz region if sensitive chinchilla cochlea. J Acoust Soc Am 122:2725–2737

    Article  PubMed  Google Scholar 

  19. Schoukens J, Lataire J, Pintelon R et al (2009) Robustness issues of the equivalent linear representation of a nonlinear system. IEEE Trans Instrum Meas 58:1737–1745

    Article  Google Scholar 

  20. Soons JAM, Aernouts J, Dirckx JJJ (2010) Elasticity modulus of rabbit middle ear ossicles determined by a novel micro-indentation technique. Hear Res 263:33–37. doi:10.1016/j.heares.2009.10.001

    Article  PubMed  Google Scholar 

  21. Voss SE, Rosowski JJ, Merchant SN, Peake WT (2000) Acoustic responses of the human middle ear. Hear Res 150:43–69. doi:10.1016/S0378-5955(00)00177-5

    CAS  Article  PubMed  Google Scholar 

  22. Willi UB, Ferrazzini MA, Huber AMM (2002) The incudo-malleolar joint and sound transmission losses. Hear Res 174:32–44. doi:10.1016/S0378-5955(02)00632-9

    Article  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank Fred Wiese and William Deblauwe for their assistance with the measurement setup.

This work was supported by the Research Foundation Flanders—Fonds Wetenschappelijk Onderzoek (FWO).

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to John Peacock.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peacock, J., Pintelon, R. & Dirckx, J. Nonlinear Vibration Response Measured at Umbo and Stapes in the Rabbit Middle ear. JARO 16, 569–580 (2015). https://doi.org/10.1007/s10162-015-0535-7

Download citation

Keywords

  • middle ear
  • nonlinear distortions
  • laser vibrometry
  • multisine