Skip to main content
Log in

A Sox10rtTA/+ Mouse Line Allows for Inducible Gene Expression in the Auditory and Balance Organs of the Inner Ear

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Genetic mouse models provide invaluable tools for discerning gene function in vivo. Tetracycline-inducible systems (Tet-On/Off) provide temporal and cell-type specific control of gene expression, offering an alternative or even complementary approach to existing Cre/LoxP systems. Here we characterized a Sox10rtTA/+ knock-in mouse line which demonstrates inducible reverse tetracycline trans-activator (rtTA) activity and Tet-On transgene expression in the inner ear following induction with the tetracycline derivative doxycycline (Dox). These Sox10rtTA/+ mice do not exhibit any readily observable developmental or hearing phenotypes, and actively drive Tet-On transgene expression in Sox10 expressing cells in the inner ear. Sox10rtTA/+ activity was revealed by multiple Tet-On reporters to be nearly ubiquitous throughout the membranous labyrinth of the developing inner ear, and notably absent from hair cells, tympanic border cells, and ganglion neurons following postnatal Dox inductions. Interestingly, Dox-induced Sox10rtTA/+ activity declined with induction age, where Tet-On reporters became uninducible in adult cochlear epithelium. Co-administration of the loop diuretic furosemide was able to rescue Dox-induced reporter expression, though this method also caused significant cochlear hair cell loss. Surprisingly, Sox10rtTA/+ driven reporter expression in the cochlea persists for at least 54 days after cessation of neonatal induction, presumably due to the persistence of Dox within inner ear tissues. These findings highlight the utility of the Sox10rtTA/+ mouse line as a powerful tool for functional genetic studies of the auditory and balance organs in vivo, but also reveal some important considerations that must be adequately controlled for in future studies that rely upon Tet-On/Off systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  • Barclay M, Ryan AF, Housley GD (2011) Type I vs type II spiral ganglion neurons exhibit differential survival and neuritogenesis during cochlear development. Neural Dev 6:33

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bermingham-McDonogh O, Oesterle EC, Stone JS, Hume CR, Huynh HM, Hayashi T (2006) Expression of Prox1 during mouse cochlear development. J Comp Neurol 496:172–186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bondurand N, Kuhlbrodt K, Pingault V, Enderich J, Sajus M, Tommerup N, Warburg M, Hennekam RC, Read AP, Wegner M, Goossens M (1999) A molecular analysis of the yemenite deaf-blind hypopigmentation syndrome: SOX10 dysfunction causes different neurocristopathies. Hum Mol Genet 8:1785–1789

    Article  CAS  PubMed  Google Scholar 

  • Breuskin I, Bodson M, Thelen N, Thiry M, Borgs L, Nguyen L, Lefebvre PP, Malgrange B (2009) Sox10 promotes the survival of cochlear progenitors during the establishment of the organ of Corti. Dev Biol 335:327–339

    Article  CAS  PubMed  Google Scholar 

  • Breuskin I, Bodson M, Thelen N, Thiry M, Borgs L, Nguyen L, Stolt C, Wegner M, Lefebvre PP, Malgrange B (2010) Glial but not neuronal development in the cochleo-vestibular ganglion requires Sox10. J Neurochem 114:1827–1839

    Article  CAS  PubMed  Google Scholar 

  • Britsch S, Goerich DE, Riethmacher D, Peirano RI, Rossner M, Nave KA, Birchmeier C, Wegner M (2001) The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev 15:66–78

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Burger A, Koesters R, Schafer BW, Niggli FK (2011) Generation of a novel rtTA transgenic mouse to induce time-controlled, tissue-specific alterations in Pax2-expressing cells. Genesis 49:797–802

    Article  CAS  PubMed  Google Scholar 

  • Cantrell VA, Owens SE, Chandler RL, Airey DC, Bradley KM, Smith JR, Southard-Smith EM (2004) Interactions between Sox10 and EdnrB modulate penetrance and severity of aganglionosis in the Sox10Dom mouse model of Hirschsprung disease. Hum Mol Genet 13:2289–2301

    Article  CAS  PubMed  Google Scholar 

  • Chai R, Xia A, Wang T, Jan TA, Hayashi T, Bermingham-McDonogh O, Cheng AG (2011) Dynamic expression of Lgr5, a Wnt target gene, in the developing and mature mouse cochlea. J Assoc Res Otolaryngol 12:455–469

    Article  PubMed Central  PubMed  Google Scholar 

  • Chiba H, Chambon P, Metzger D (2000) F9 embryonal carcinoma cells engineered for tamoxifen-dependent Cre-mediated site-directed mutagenesis and doxycycline-inducible gene expression. Exp Cell Res 260:334–339

    Article  CAS  PubMed  Google Scholar 

  • Cox BC, Chai R, Lenoir A, Liu Z, Zhang L, Nguyen DH, Chalasani K, Steigelman KA, Fang J, Cheng AG, Zuo J (2014a) Spontaneous hair cell regeneration in the neonatal mouse cochlea in vivo. Development 141:816–829

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cox BC, Dearman JA, Brancheck J, Zindy F, Roussel MF, Zuo J (2014b) Generation of Atoh1-rtTA transgenic mice: a tool for inducible gene expression in hair cells of the inner ear. Sci Rep 4:6885

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dai CF, Mangiardi D, Cotanche DA, Steyger PS (2006) Uptake of fluorescent gentamicin by vertebrate sensory cells in vivo. Hear Res 213:64–78

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Danielian PS, Muccino D, Rowitch DH, Michael SK, McMahon AP (1998) Modification of gene activity in mouse embryos in utero by a tamoxifen-inducible form of Cre recombinase. Curr Biol 8:1323–1326

    Article  CAS  PubMed  Google Scholar 

  • Dememes D, Eybalin M, Renard N (1993) Cellular distribution of parvalbumin immunoreactivity in the peripheral vestibular system of three rodents. Cell Tissue Res 274:487–492

    Article  CAS  PubMed  Google Scholar 

  • Dickson RC, Sheetz RM, Lacy LR (1981) Genetic regulation: yeast mutants constitutive for beta-galactosidase activity have an increased level of beta-galactosidase messenger ribonucleic acid. Mol Cell Biol 1:1048–1056

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ding D, McFadden SL, Browne RW, Salvi RJ (2003) Late dosing with ethacrynic acid can reduce gentamicin concentration in perilymph and protect cochlear hair cells. Hear Res 185:90–96

    Article  CAS  PubMed  Google Scholar 

  • Ehret G (1976) Development of absolute auditory thresholds in the house mouse (Mus musculus). J Am Audiol Soc 1:179–184

    CAS  PubMed  Google Scholar 

  • Eybalin M, Ripoll C (1990) Immunolocalization of parvalbumin in two glutamatergic cell types of the guinea pig cochlea: inner hair cells and spinal ganglion neurons. C R Acad Sci III 310:639–644

    CAS  PubMed  Google Scholar 

  • Fan X, Petitt M, Gamboa M, Huang M, Dhal S, Druzin ML, Wu JC, Chen-Tsai Y, Nayak NR (2012) Transient, inducible, placenta-specific gene expression in mice. Endocrinology 153:5637–5644

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feil S, Valtcheva N, Feil R (2009) Inducible Cre mice. Methods Mol Biol 530:343–363

    Article  CAS  PubMed  Google Scholar 

  • Furth PA, St Onge L, Boger H, Gruss P, Gossen M, Kistner A, Bujard H, Hennighausen L (1994) Temporal control of gene expression in transgenic mice by a tetracycline-responsive promoter. Proc Natl Acad Sci U S A 91:9302–9306

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gonda DK, Bachmair A, Wunning I, Tobias JW, Lane WS, Varshavsky A (1989) Universality and structure of the N-end rule. J Biol Chem 264:16700–16712

    CAS  PubMed  Google Scholar 

  • Gossen M, Freundlieb S, Bender G, Muller G, Hillen W, Bujard H (1995) Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766–1769

    Article  CAS  PubMed  Google Scholar 

  • Higashiyama K, Takeuchi S, Azuma H, Sawada S, Yamakawa K, Kakigi A, Takeda T (2003) Bumetanide-induced enlargement of the intercellular space in the stria vascularis critically depends on Na + transport. Hear Res 186:1–9

    Article  CAS  PubMed  Google Scholar 

  • Hosoda H, Miyao T, Uchida S, Sakai S, Kida S (2011) Development of a tightly-regulated tetracycline-dependent transcriptional activator and repressor co-expression system for the strong induction of transgene expression. Cytotechnology 63:211–216

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jan TA, Chai R, Sayyid ZN, van Amerongen R, Xia A, Wang T, Sinkkonen ST, Zeng YA, Levin JR, Heller S, Nusse R, Cheng AG (2013) Tympanic border cells are Wnt-responsive and can act as progenitors for postnatal mouse cochlear cells. Development 140:1196–1206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jelena B, Christina L, Eric V, Fabiola QR (2014) Phenotypic variability in Waardenburg syndrome resulting from a 22q12.3-q13.1 microdeletion involving SOX10. Am J Med Genet A 164A:1512–1519

    Article  PubMed  Google Scholar 

  • Joy VA (1979) Minocycline and ototoxicity. N Engl J Med 301:1450–1451

    CAS  PubMed  Google Scholar 

  • Kellendonk C, Tronche F, Casanova E, Anlag K, Opherk C, Schutz G (1999) Inducible site-specific recombination in the brain. J Mol Biol 285:175–182

    Article  CAS  PubMed  Google Scholar 

  • Kelly MC, Chang Q, Pan A, Lin X, Chen P (2012) Atoh1 directs the formation of sensory mosaics and induces cell proliferation in the postnatal mammalian cochlea in vivo. J Neurosci 32:6699–6710

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kistner A, Gossen M, Zimmermann F, Jerecic J, Ullmer C, Lubbert H, Bujard H (1996) Doxycycline-mediated quantitative and tissue-specific control of gene expression in transgenic mice. Proc Natl Acad Sci U S A 93:10933–10938

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Knott A, Garke K, Urlinger S, Guthmann J, Muller Y, Thellmann M, Hillen W (2002) Tetracycline-dependent gene regulation: combinations of transregulators yield a variety of expression windows. Biotechniques 32:796, 798, 800 passim

    CAS  PubMed  Google Scholar 

  • Liu W, Davis RL (2014) Calretinin and calbindin distribution patterns specify subpopulations of type I and type II spiral ganglion neurons in postnatal murine cochlea. J Comp Neurol 522:2299–2318

    Article  CAS  PubMed  Google Scholar 

  • Liu P, Fu X, Johnson RL (2011) Efficient in vivo doxycycline and cre recombinase-mediated inducible transgene activation in the murine trabecular meshwork. Invest Ophthalmol Vis Sci 52:969–974

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu Z, Liu Z, Walters BJ, Owen T, Kopan R, Zuo J (2013) In vivo visualization of Notch1 proteolysis reveals the heterogeneity of Notch1 signaling activity in the mouse cochlea. PLoS One 8, e64903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ludwig A, Schlierf B, Schardt A, Nave KA, Wegner M (2004) Sox10-rtTA mouse line for tetracycline-inducible expression of transgenes in neural crest cells and oligodendrocytes. Genesis 40:171–175

    Article  CAS  PubMed  Google Scholar 

  • Maison SF, Parker LL, Young L, Adelman JP, Zuo J, Liberman MC (2007) Overexpression of SK2 channels enhances efferent suppression of cochlear responses without enhancing noise resistance. J Neurophysiol 97:2930–2936

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mallo M (2006) Controlled gene activation and inactivation in the mouse. Front Biosci 11:313–327

    Article  CAS  PubMed  Google Scholar 

  • Mansuy IM, Winder DG, Moallem TM, Osman M, Mayford M, Hawkins RD, Kandel ER (1998) Inducible and reversible gene expression with the rtTA system for the study of memory. Neuron 21:257–265

    Article  CAS  PubMed  Google Scholar 

  • Michel G, Mosser J, Olle J (1984) Pharmacokinetics and tissue localization of doxycycline polyphosphate and doxycycline hydrochloride in the rat. Eur J Drug Metab Pharmacokinet 9:149–153

    Article  CAS  PubMed  Google Scholar 

  • Motrich RD, Ponce AA, Rivero VE (2007) Effect of tamoxifen treatment on the semen quality and fertility of the male rat. Fertil Steril 88:452–461

    Article  CAS  PubMed  Google Scholar 

  • Oesterle EC, Campbell S, Taylor RR, Forge A, Hume CR (2008) Sox2 and JAGGED1 expression in normal and drug-damaged adult mouse inner ear. J Assoc Res Otolaryngol 9:65–89

    Article  PubMed Central  PubMed  Google Scholar 

  • Pan W, Jin Y, Stanger B, Kiernan AE (2010) Notch signaling is required for the generation of hair cells and supporting cells in the mammalian inner ear. Proc Natl Acad Sci U S A 107:15798–15803

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pan W, Jin Y, Chen J, Rottier RJ, Steel KP, Kiernan AE (2013) Ectopic expression of activated notch or SOX2 reveals similar and unique roles in the development of the sensory cell progenitors in the mammalian inner ear. J Neurosci 33:16146–16157

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paratore C, Eichenberger C, Suter U, Sommer L (2002) Sox10 haploinsufficiency affects maintenance of progenitor cells in a mouse model of Hirschsprung disease. Hum Mol Genet 11:3075–3085

    Article  CAS  PubMed  Google Scholar 

  • Pingault V, Bondurand N, Kuhlbrodt K, Goerich DE, Prehu MO, Puliti A, Herbarth B, Hermans-Borgmeyer I, Legius E, Matthijs G, Amiel J, Lyonnet S, Ceccherini I, Romeo G, Smith JC, Read AP, Wegner M, Goossens M (1998) SOX10 mutations in patients with Waardenburg-Hirschsprung disease. Nat Genet 18:171–173

    Article  CAS  PubMed  Google Scholar 

  • Pingault V, Bodereau V, Baral V, Marcos S, Watanabe Y, Chaoui A, Fouveaut C, Leroy C, Verier-Mine O, Francannet C, Dupin-Deguine D, Archambeaud F, Kurtz FJ, Young J, Bertherat J, Marlin S, Goossens M, Hardelin JP, Dode C, Bondurand N (2013) Loss-of-function mutations in SOX10 cause Kallmann syndrome with deafness. Am J Hum Genet 92:707–724

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pingault V, Pierre-Louis L, Chaoui A, Verloes A, Sarrazin E, Brandberg G, Bondurand N, Uldall P, Manouvrier-Hanu S (2014) Phenotypic similarities and differences in patients with a p.Met112Ile mutation in SOX10. Am J Med Genet A 164A:2344–2350

  • Robinson GL, Robinson JP, Lastwika KJ, Holmen SL, Vanbrocklin MW (2013) Akt signaling accelerates tumor recurrence following ras inhibition in the context of ink4a/arf loss. Genes Cancer 4:476–485

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shnerson A, Pujol R (1981) Age-related changes in the C57BL/6 J mouse cochlea. I. Physiological findings. Brain Res 254:65–75

    Article  CAS  PubMed  Google Scholar 

  • Smith RL, Geller AI, Escudero KW, Wilcox CL (1995) Long-term expression in sensory neurons in tissue culture from herpes simplex virus type 1 (HSV-1) promoters in an HSV-1-derived vector. J Virol 69:4593–4599

    PubMed Central  CAS  PubMed  Google Scholar 

  • Son EJ, Wu L, Yoon H, Kim S, Choi JY, Bok J (2012) Developmental gene expression profiling along the tonotopic axis of the mouse cochlea. PLoS One 7, e40735

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Southard-Smith EM, Angrist M, Ellison JS, Agarwala R, Baxevanis AD, Chakravarti A, Pavan WJ (1999a) The Sox10(Dom) mouse: modeling the genetic variation of Waardenburg-Shah (WS4) syndrome. Genome Res 9:215–225

    CAS  PubMed  Google Scholar 

  • Southard-Smith EM, Collins JE, Ellison JS, Smith KJ, Baxevanis AD, Touchman JW, Green ED, Dunham I, Pavan WJ (1999b) Comparative analyses of the Dominant megacolon-SOX10 genomic interval in mouse and human. Mamm Genome 10:744–749

    Article  CAS  PubMed  Google Scholar 

  • Stupp H, Kupper K, Lagler F, Sous H, Quante M (1973) Inner ear concentrations and ototoxicity of different antibiotics in local and systemic application. Audiology 12:350–363

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Chen X, Xiao D (2007) Tetracycline-inducible expression systems: new strategies and practices in the transgenic mouse modeling. Acta Biochim Biophys Sin (Shanghai) 39:235–246

    Article  CAS  Google Scholar 

  • Suzuki M, Yamasoba T, Kaga K (1998) Development of the blood-labyrinth barrier in the rat. Hear Res 116:107–112

    Article  CAS  PubMed  Google Scholar 

  • Tachibana M, Machino M, Toyoda Y, Suzuki M (1973) Morphologic effects of minocycline on the cochlea of the guinea pig. Arch Klin Exp Ohren Nasen Kehlkopfheilkd 204:163–174

    Article  CAS  PubMed  Google Scholar 

  • Tran Ba Huy P, Manuel C, Meulemans A, Sterkers O, Wassef M, Amiel C (1983) Ethacrynic acid facilitates gentamicin entry into endolymph of the rat. Hear Res 11:191–202

    Article  CAS  PubMed  Google Scholar 

  • Wakaoka T, Motohashi T, Hayashi H, Kuze B, Aoki M, Mizuta K, Kunisada T, Ito Y (2013) Tracing Sox10-expressing cells elucidates the dynamic development of the mouse inner ear. Hear Res 302:17–25

    Article  CAS  PubMed  Google Scholar 

  • Walters BJ, Zuo J (2013) Postnatal development, maturation and aging in the mouse cochlea and their effects on hair cell regeneration. Hear Res 297:68–83

    Article  PubMed Central  PubMed  Google Scholar 

  • Watanabe K, Takeda K, Katori Y, Ikeda K, Oshima T, Yasumoto K, Saito H, Takasaka T, Shibahara S (2000) Expression of the Sox10 gene during mouse inner ear development. Brain Res Mol Brain Res 84:141–145

    Article  CAS  PubMed  Google Scholar 

  • Watanabe Y, Broders-Bondon F, Baral V, Paul-Gilloteaux P, Pingault V, Dufour S, Bondurand N (2013) Sox10 and Itgb1 interaction in enteric neural crest cell migration. Dev Biol 379:92–106

    Article  CAS  PubMed  Google Scholar 

  • Wunderlich FT, Wildner H, Rajewsky K, Edenhofer F (2001) New variants of inducible Cre recombinase: a novel mutant of Cre-PR fusion protein exhibits enhanced sensitivity and an expanded range of inducibility. Nucleic Acids Res 29:E47

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamane H, Nakai Y, Konishi K (1988) Furosemide-induced alteration of drug pathway to cochlea. Acta Otolaryngol Suppl 447:28–35

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Chen H, Luo H, An J, Sun L, Mei L, He C, Jiang L, Jiang W, Xia K, Li JD, Feng Y (2012) Functional analysis of Waardenburg syndrome-associated PAX3 and SOX10 mutations: report of a dominant-negative SOX10 mutation in Waardenburg syndrome type II. Hum Genet 131:491–503

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Lingli Zhang and Mario Sauceda for assistance with genotyping and Dr. Brandon Cox for helpful comments in the preparation of this manuscript. This research was supported by funding from the National Institutes of Health (grants DC006471 (J.Z.), P30CA21765 (St. Jude)), American Lebanese Syrian Associated Charities (ALSAC) of St. Jude Children’s Research Hospital, the Office of Naval Research (grants N000140911014, N000141210191, N000141210775 (J.Z.)), the National Organization for Hearing Research (NOHR) Foundation (B.W.), the Hearing Health Foundation (Emerging Research Grant, B.W.), and The Hartwell Foundation (Individual Biomedical Research Award, J.Z.).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Zuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Walters, B.J., Zuo, J. A Sox10rtTA/+ Mouse Line Allows for Inducible Gene Expression in the Auditory and Balance Organs of the Inner Ear. JARO 16, 331–345 (2015). https://doi.org/10.1007/s10162-015-0517-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-015-0517-9

Keywords

Navigation