Skip to main content
Log in

The Precedence Effect in Sound Localization

  • Review Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

In ordinary listening environments, acoustic signals reaching the ears directly from real sound sources are followed after a few milliseconds by early reflections arriving from nearby surfaces. Early reflections are spectrotemporally similar to their source signals but commonly carry spatial acoustic cues unrelated to the source location. Humans and many other animals, including nonmammalian and even invertebrate animals, are nonetheless able to effectively localize sound sources in such environments, even in the absence of disambiguating visual cues. Robust source localization despite concurrent or nearly concurrent spurious spatial acoustic information is commonly attributed to an assortment of perceptual phenomena collectively termed “the precedence effect,” characterizing the perceptual dominance of spatial information carried by the first-arriving signal. Here, we highlight recent progress and changes in the understanding of the precedence effect and related phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  • Adams JC, Mugnaini E (1984) Dorsal nucleus of the lateral lemniscus: a nucleus of GABAergic projection neurons. Brain Res Bull 13:585–590

  • Agaeva MY, Al’tman YA (2008) Echo thresholds measured in the vertical and horizontal planes. Hum Physiol 34:678–684

    Article  Google Scholar 

  • Agrawal SS (2008) Spatial hearing abilities in adults with bilateral cochlear implants. Doctoral dissertation. University of Wisconsin – Madison

  • Akeroyd MA, Guy FH (2011) The effect of hearing impairment on localization dominance for single-word stimuli. J Acoust Soc Am 130:312

    Article  PubMed Central  PubMed  Google Scholar 

  • Alain C, Arnott S, Picton T (2001) Bottom-up and top-down influences on auditory scene analysis: evidence from event-related brain potentials. J Exp Psychol: Hum Percept Perform 27:1072–89

  • Andreasen NC (1997) The role of the thalamus in schizophrenia. Can J Psychiatry 42:27–33

    CAS  PubMed  Google Scholar 

  • Backer KC, Hill KT, Shahin AJ, Miller LM (2010) Neural time course of echo suppression in humans. J Neurosci 30:1905–1913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baxter CS, Nelson BS, Takahashi TT (2013) The role of envelope shape in the localization of multiple sound sources and echoes in the barn owl. J Neurophysiol 109:924–31

    Article  PubMed Central  PubMed  Google Scholar 

  • Bernstein LR, Trahiotis C (2002) Enhancing sensitivity to interaural delays at high frequencies by using ‘transposed stimuli’. J Acoust Soc Am 112:1026–1036

    Article  PubMed  Google Scholar 

  • Bianchi F, Verhulst S, Dau T (2013) Experimental evidence for a cochlear source of the precedence effect. J Assoc Res Otolaryngol 14:767–779

    Article  PubMed Central  PubMed  Google Scholar 

  • Bilsen FA, Raatgever J (1973) Spectral dominance in binaural lateralization. Acustica 28:131–132

    Google Scholar 

  • Bishop CW, London S, Miller LM (2011) Visual influences on echo suppression. Curr Biol 21:221–225

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bishop CW, London S, Miller LM (2012) Neural time course of visually enhanced echo suppression. J Neurophysiol 108:1869–1883

    Article  PubMed Central  PubMed  Google Scholar 

  • Blauert J (1997) Spatial hearing: the psychophysics of human sound localization, revised edition. The MIT Press, Cambridge

    Google Scholar 

  • Blauert J, Cobben W (1978) Some consideration of binaural cross-correlation analysis. Acta Acust united Acust 39(2):96–104

    Google Scholar 

  • Blauert J, Divenyi PL (1988) Spectral selectivity in binaural contralateral inhibition. Acta Acust united Acust 66(5):267–274

    Google Scholar 

  • Bosch, Marquez (2002) Female preference function related to precedence effect in an amphibian anuran (Alytes cisternasii): tests with non-overlapping calls. Behav Ecol 13:149–153

    Article  Google Scholar 

  • Braasch J (2013) A precedence effect model to simulate localization dominance using an adaptive, stimulus parameter-based inhibition process. J Acoust Soc Am 134:420–435

    Article  PubMed  Google Scholar 

  • Braasch J, Blauert J (2003) The precedence effect for noise bursts of different bandwidths. II. Comparison of model algorithms. Acoust Sci Technol 24:5

    Google Scholar 

  • Braasch J, Blauert J, Djelani T (2003) The precedence effect for noise bursts of different bandwidths. I. Psychoacoustical data. Acoust Sci Tech 24:233–241

  • Brandewie E, Zahorik P (2010) Prior listening in rooms improves speech intelligibility. J Acoust Soc Am 128:291–299

    Article  PubMed Central  PubMed  Google Scholar 

  • Breebaart J, van de Par S, Kohlrausch A (2001a) Binaural processing model based on contralateral inhibition. I. Model structure. J Acoust Soc Am 110:1074–1088

    Article  CAS  PubMed  Google Scholar 

  • Breebaart J, van de Par S, Kohlrausch A (2001b) Binaural processing model based on contralateral inhibition. I. Dependence on spectral parameters. J Acoust Soc Am 110:1089–1104

    Article  CAS  PubMed  Google Scholar 

  • Brown AD, Stecker GC (2010) Temporal weighting of interaural time and level differences in high-rate click trains. J Acoust Soc Am 128:332–341

    Article  PubMed Central  PubMed  Google Scholar 

  • Brown AD, Stecker GC (2011) Temporal weighting of interaural time and level differences in high-rate click trains. II: the effect of binaurally synchronous temporal jitter. J Acoust Soc Am 129:293–300

    Article  PubMed Central  PubMed  Google Scholar 

  • Brown AD, Stecker GC (2012) The precedence effect in sound localization: distinct roles for interaural time and level differences suggested by behavioral, modeling and acoustic data. Assoc Res Otolaryngol Abstr 35:648

    Google Scholar 

  • Brown AD, Stecker GC (2013) The precedence effect in sound localization: fusion and lateralization measures for pairs and trains of clicks lateralized by interaural time and level differences. J Acoust Soc Am 133:2883–2898

    Article  PubMed Central  PubMed  Google Scholar 

  • Brown AD, Jones HG, Kan AH, Stecker GC, Goupell MJ, and Litovsky RY (2013) The precedence effect: insights from electric hearing. Conf. on Implantable Auditory Prostheses, abstract M10

  • Brugge JF, Anderson DJ, Aitkin LM (1970) Responses of neurons in the dorsal nucleus of the lateral lemniscus of cat to binaural tonal stimulation. J Neurophysiol 33:441–458

    CAS  PubMed  Google Scholar 

  • Brughera A, Dunai L, Hartmann WM (2013) Human interaural time difference thresholds for sine tones: the high frequency limit. J Acoust Soc Am 133:2839

    Article  PubMed Central  PubMed  Google Scholar 

  • Burger RM, Pollak GD (2001) Reversible inactivation of the dorsal nucleus of the lateral lemniscus reveals its role in the processing of multiple sound sources in the inferior colliculus of bats. J Neurosci 21:4830–4843

    CAS  PubMed  Google Scholar 

  • Carney LH (1993) A model for the responses of low-frequency auditory-nerve fibers in cat. J Acoust Soc Am 93:401

    Article  CAS  PubMed  Google Scholar 

  • Carney LH, Yin TCT (1989) Responses of low-frequency cells in the inferior colliculus to interaural time differences of clicks: excitatory and inhibitory components. J Neurophysiol 62:144–161

    CAS  PubMed  Google Scholar 

  • Clifton RK (1987) Breakdown of echo suppression of the precedence effect. J Acoust Soc Am 82:1834–1835

    Article  CAS  PubMed  Google Scholar 

  • Clifton RK, Freyman RL (1989) Effect of click rate and delay on breakdown of the precedence effect. Percept Psychophys 46:139–145

    Article  CAS  PubMed  Google Scholar 

  • Clifton RK, Morrongiello BA, Dowd JM (1984) A developmental look at an auditory illusion: the precedence effect. Dev Psychol 17:519–536

    Article  CAS  Google Scholar 

  • Clifton RK, Freyman RL, Litovsky RY, McCall D (1994) Listeners’ expectations about echoes can raise or lower echo threshold. J Acoust Soc Am 95:1525–1533

    Article  CAS  PubMed  Google Scholar 

  • Colburn HS (1973) Theory of binaural interaction based on auditory-nerve data. I. General strategy and preliminary results on interaural discrimination. J Acoust Soc Am 54:1458–1470

    Article  CAS  PubMed  Google Scholar 

  • Cranford JL (1982) Localization of paired sound sources in cats: effects of variable arrival times. J Acoust Soc Am 72:1309–11

    Article  CAS  PubMed  Google Scholar 

  • Cranford JL, Boose M, Moore CA (1990) Tests of the precedence effect in sound localization reveal abnormalities in multiple sclerosis. Ear Hear 11:282–288

    Article  CAS  PubMed  Google Scholar 

  • Cranford JL, Andres MA, Piatz KK, Reissig KL (1993) Influences of age and hearing loss on the precedence effect in sound localiztion. J Speech Lang Hear Res 36:437

    Article  CAS  Google Scholar 

  • Cremer L (1948) Geometrische raumakustik. Die Wissenschaftlichen Grundlagen der Raumakustik (S. Hertzel, Stuttgart) vol. 1, p. 126

  • Damaschke J, Riedel H, Kollmeier B (2005) Neural correlates of the precedence effect in auditory evoked potentials. Hear Res 205:157–171

    Article  PubMed  Google Scholar 

  • Dent ML, Dooling RJ (2003a) Investigations of the precedence effect in budgerigars: effects of stimulus type, intensity, duration, and location. J Acoust Soc Am 113:2146–2158

    Article  PubMed  Google Scholar 

  • Dent ML, Dooling RJ (2003b) Investigations of the precedence effect in budgerigars: the perceived location of auditory images. J Acoust Soc Am 113:2159–2169

    Article  PubMed  Google Scholar 

  • Dent ML, Tollin DJ, Yin TCT (2009) Influence of sound source location on the behavior and physiology of the precedence effect in cats. J Neurophysiol 102:724–734

    Article  PubMed Central  PubMed  Google Scholar 

  • Devore S, Delgutte B (2010) Effects of reverberation on the directional sensitivity of auditory neurons across the tonotopic axis: influences of interaural time and level differences. J Neurosci 30:7826–7837

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Devore S, Ihlefeld A, Hancock K, Shinn-Cunningham BG, Delgutte B (2009) Accurate sound localization in reverberant environments is mediated by robust encoding of spatial cues in the auditory midbrain. Neuron 62:123–134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dietz M, Ewert S, Hohmann V (2011) Auditory model based direction estimation of concurrent speakers from binaural signals. Speech Comm 53:592–605

    Article  Google Scholar 

  • Dietz M, Marquardt T, Salminen NH, McAlpine D (2013) Emphasis of spatial cues in the temporal fine structure during the rising segments of amplitude-modulated sounds. Proc Nat Acad Sci 110:15151–15156

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dimitrijevic A, Stapells DR (2006) Human electrophysiological examination of the buildup of the precedence effect. Neuroreport 17:1133–1137

    Article  PubMed  Google Scholar 

  • Dizon RM, Colburn HS (2006) The influence of spectral, temporal, and interaural stimulus variations on the precedence effect. J Acoust Soc Am 119:2947–2964

    Article  PubMed  Google Scholar 

  • Dizon RM, Litovsky RY (2004) Localization dominance in the median-sagittal plane: effect of stimulus duration. J Acoust Soc Am 115:3142–3155

    Article  PubMed  Google Scholar 

  • Djelani T, Blauert J (2001) Investigations into the build-up and breakdown of the precedence effect. Acta Acustica 87:253–261

    Google Scholar 

  • Donovan JM, Nelson BS, Takahashi TT (2012) The contributions of onset and offset echo delays to auditory spatial perception in human listeners. J Acoust Soc Am 132:3912–3924

    Article  PubMed Central  PubMed  Google Scholar 

  • Ebata M, Sone T, Nimura T (1968) On the perception of direction of echo. J Acoust Soc Am 44:542–547

    Article  CAS  PubMed  Google Scholar 

  • Faller C, Merimaa J (2004) Source localization in complex listening situations: selection of binaural cues based on interaural coherence. J Acoust Soc Am 116:3075–3089

    Article  PubMed  Google Scholar 

  • Fay RD (1936) A method for obtaining natural directional effects in a public address system. J Acoust Soc Am 7:239

    Article  Google Scholar 

  • Fitzpatrick DC, Kuwada S, Batra R, Trahiotis C (1995) Neural responses to simple simulated echoes in the auditory brain stem of the unanesthetized rabbit. J Neurophysiol 74:2469–2485

    CAS  PubMed  Google Scholar 

  • Fitzpatrick DC, Kuwada S, Kim DO, Parham K, Batra R (1999) Responses of neurons to click-pairs as simulated echoes: auditory nerve to auditory cortex. J Acoust Soc Am 106:3460–72

    Article  CAS  PubMed  Google Scholar 

  • Franssen NV (1960) Some considerations on the mechanism of directional hearing. Doctoral Disseration. Technische Hogeschool, Delft, The Netherlands

  • Freyman RL, Keen R (2006) Constructing and disrupting listeners’ models of auditory space. J Acoust Soc Am 120:3957–3965

    Article  PubMed  Google Scholar 

  • Freyman RL, Clifton RK, Litovsky RY (1991) Dynamic processes in the precedence effect. J Acoust Soc Am 90:874–884

    Article  CAS  PubMed  Google Scholar 

  • Freyman RL, Zurek PM, Balakrishnan U, Chiang YC (1997) Onset dominance in lateralization. J Acoust Soc Am 101:1649–1659

    Article  CAS  PubMed  Google Scholar 

  • Gai Y, Ruhland JL, Yin TC, Tollin DJ (2013) Behavioral and modeling studies of sound localization in cats: effects of stimulus level and duration. J Neurophysiol 110:607–620

    Article  PubMed Central  PubMed  Google Scholar 

  • Gardner MB (1968) Historical background of the Haas and/or precedence effect. J Acoust Soc Am 43:1244–1248

    Google Scholar 

  • Gaskell H (1983) The precedence effect. Hear Res 12:277–303

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Hernandez T, Mantolan-Sarmiento B, Gonzalez-Gonzalez B, Perez-Gonzalez H (1996) Sources of GABAergic input to the inferior colliculus of the rat. J Comp Neurol 372:309–326

    Article  CAS  PubMed  Google Scholar 

  • Goupell MJ, Laback B, Majdak P (2009) Enhancing sensitivity to interaural time differences at high modulation rates by introducing temporal jitter. J Acoust Soc Am 126:2511–2521

    Article  PubMed Central  PubMed  Google Scholar 

  • Goupell MJ, Yu G, Litovsky RY (2012) The effect on an additional reflection in a precedence effect experiment. J Acoust Soc Am 131:2958–2967

    Article  PubMed Central  PubMed  Google Scholar 

  • Goverts ST, Houtgast T, van Beek HHM (2002) The precedence effect for lateralization for the mild sensory neural hearing impaired. Hear Res 163:82–92

    Article  Google Scholar 

  • Grantham WD (1996) Left-right asymmetry in the buildup of echo suppression in normal-hearing adults. J Acoust Soc Am 99:1118–1123

    Article  CAS  PubMed  Google Scholar 

  • Grantham WD, Ashmead DH, Ricketts TA, Haynes DS, Labadie RF (2008) Interaural time and level difference thresholds for acoustically presented signals in post-lingually deafened adults fitted with bilateral cochlear implants using CIS+ processing. Ear Hear 29:33–44

    PubMed  Google Scholar 

  • Haas H (1949) The influence of a single echo on the audibility of speech. J Audiol Eng Soc 20:145–159

    Google Scholar 

  • Haas H (1951) On the influence of a single echo on the intelligibility of speech. Acustica 1:48–58

    Google Scholar 

  • Hafter ER (1997) Binaural adaptation and the effectiveness of a stimulus beyond its onset. In: H Gilkey and TR Anderson (Eds.) Binaural and spatial hearing in real and virtual environments, (Maywah, NJ: Lawrence Erlbaum Associates) pp. 211-232

  • Hafter ER, Buell TN (1990) Restarting the adapted binaural system. J Acoust Soc Am 88:806–812

    Article  CAS  PubMed  Google Scholar 

  • Hafter ER, Dye RH (1983) Detection of interaural differences of time in trains of high-frequency clicks as a function of interclick interval and number. J Acoust Soc Am 73:644–651

    Article  CAS  PubMed  Google Scholar 

  • Hafter ER, Dye RH, Wenzel E (1983) Detection of interaural differences of intensity in trains of high-frequency clicks as a function of interclick interval and number. J Acoust Soc Am 73:1708–1713

    Article  CAS  PubMed  Google Scholar 

  • Hafter ER, Buell TN, Richards VM (1988) Onset-coding in lateralization: its form, site, and function. In: Edelman GM, Gall WE, Cowan WM (eds) Auditory function: neurobiological bases of hearing. Wiley, New York, pp 647–676

    Google Scholar 

  • Hafter ER, Dye RH, Wenzel E, Knecht K (1990) The combination of interaural time and intensity in the lateralization of high-frequency complex signals. J Acoust Soc Am 87:1702–1708

    Article  CAS  PubMed  Google Scholar 

  • Hafter ER, Valenzuela MN, Stecker GC, Miele JA, and Crum PAC (2001) Informational dominance in the auditory scence. In: Physiological and psychophysical bases of auditory function. Breebaart, Houtsma, Kohlrausch, Prijs, and Schoonhoven (Eds.) (Maastricht NL: Shaker) pp. 208-214

  • Hall WM (1936) A method for maintaining in a public address system the illusion that the sound comes from the speaker’s mouth. J Acoust Soc Am 7:239

    Article  Google Scholar 

  • Hartung K, Trahiotis C (2001) Peripheral auditory processing and investigations of the ‘precedence effect’ which utilize successive transient stimuli. J Acoust Soc Am 110:1505–1513

    Article  CAS  PubMed  Google Scholar 

  • Heller LM, Trahiotis C (1996) Extents of laterality and binaural interference effects. J Acoust Soc Am 99:3632–3637

    Article  CAS  PubMed  Google Scholar 

  • Hutson KA, Glendenning KK, Masterton RB (1991) Acoustic chiasm IV: eight midbrain decussations of the auditory system in the cat. J Comp Neurol 312:105–131

    Article  CAS  PubMed  Google Scholar 

  • Ihlefeld A, Shinn-Cunningham BG (2011) Effects of source spectrum on sound localization in an everyday reverberant room. J Acoust Soc Am 130:324–333

    Article  PubMed Central  PubMed  Google Scholar 

  • Keen R, Freyman RL (2009) Release and re-buildup of listeners’ models of auditory space. J Acoust Soc Am 125:3243–3252

    Article  PubMed Central  PubMed  Google Scholar 

  • Keller CH, Takahashi TT (1996) Responses to simulated echoes by neurons in the barn owl’s auditory space map. J Comp Physiol A 178:499–512

    Article  CAS  PubMed  Google Scholar 

  • Kelly JB (1974) Localization of paired sound sources in the rat: small time differences. J Acoust Soc Am 55:1277–1284

    Article  CAS  PubMed  Google Scholar 

  • Kelly JB, Buckthought A, Kidd SA (1998) Monaural and binaural properties of single neurons in the rat’s dorsal nucleus of the lateral lemniscus. Hear Res 122:25–40

    Article  CAS  PubMed  Google Scholar 

  • Kerber S, Seeber BU (2013) Localization in reverberation with cochlear implants. J Assoc Res Otolaryngol 14:379–392

    Article  PubMed Central  PubMed  Google Scholar 

  • Kiang NYS, Watanabe T, Thomas EC, Clark LF (1965) Discharge patterns of single fibers in the cat’s auditory nerve. MIT Press, Cambridge, Research Monograph 35

    Google Scholar 

  • Krumbholz K, Nobbe A (2002) Buildup and breakdown on echo suppression for stimuli presented over headphones—the effects of interaural time and level differences. J Acoust Soc Am 112:654–663

    Article  PubMed  Google Scholar 

  • Lee N, Elias DO, Mason AC (2009) A precedence effect resolves phantom sound source illusions in the parasitoid fly Ornia ochracea. Proc Nat Acad Sci 106:6357–6362

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liebenthal E, Pratt H (1999) Human auditory cortex electrophysiological correlates of the precedence effect: binaural echo lateralization suppression. J Acoust Soc Am 106:291–303

    Article  Google Scholar 

  • Lindemann W (1986a) Extension of a binaural cross-correlation model by contralateral inhibition. I. Simulation of lateralization for stationary signals. J Acoust Soc Am 80:1608–1622

    Article  CAS  PubMed  Google Scholar 

  • Lindemann W (1986b) Extension of a binaural cross-correlation model by contralateral inhibition. II. The law of the first wavefront. J Acoust Soc Am 80:1623–1630

    Article  CAS  PubMed  Google Scholar 

  • Lister JJ, Roberts RA (2005) Effects of age and hearing loss on gap detection and the precedence effect: narrow-band stimuli. J Speech Lang Hear Res 48:482–493

    Article  PubMed  Google Scholar 

  • Litovsky RY (1997) Developmental changes in the precedence effect: estimates of minimal audible angle. J Acoust Soc Am 102:1739–1745

    Article  CAS  PubMed  Google Scholar 

  • Litovsky RY, Delgutte B (2002) Neural correlates of the precedence effect in the inferior colliculus: effect of localization cues. J Neurophysiol 87:976–994

    CAS  PubMed  Google Scholar 

  • Litovsky RY, Godar SP (2010) Difference in precedence effect between children and adults signifies development of sound localization abilities in complex listening tasks. J Acoust Soc Am 128:1979–1991

    Article  PubMed Central  PubMed  Google Scholar 

  • Litovsky RY, Shinn-Cunningham BG (2001) Investigation of the relationship among three common measures of precedence: fusion, localization dominance, and discrimination suppression. J Acoust Soc Am 109:346–358

    Article  CAS  PubMed  Google Scholar 

  • Litovsky RY, Yin TCT (1998a) Physiological studies of the precedence effect in the inferior colliculus of the cat. I. Correlates of psychophysics. J Neurophysiol 80:1285–301

    CAS  PubMed  Google Scholar 

  • Litovsky RY, Yin TCT (1998b) Physiological studies of the precedence effect in the inferior colliculus of the cat. II. Neural mechanisms. J Neurophysiol 80:1302–16

    CAS  PubMed  Google Scholar 

  • Litovsky RY, Colburn HS, Yost WA, Guzman SJ (1999) The precedence effect. J Acoust Soc Am 106:1633–1654

    Article  CAS  PubMed  Google Scholar 

  • Litovsky RY, Fligor BJ, Tramo MJ (2002) Functional role of the human inferior colliculus in binaural hearing. Hear Res 165:177–188

    Article  PubMed  Google Scholar 

  • Litovsky RY, Johnstone PM, Godar S (2006) Benefits of bilateral cochlear implants and/or hearing aids in children. Int J Audiol 45:78–91

    Article  Google Scholar 

  • Litovsky RY, Jones GL, Agrawal S, van Hoesel RJM (2010) Effect of age at onset of deafness on binaural sensitivity in electric hearing in humans. J Acoust Soc Am 127:400–414

    Article  PubMed Central  PubMed  Google Scholar 

  • Luce RD (1986) Response times: their role in inferring elementary mental organization. Oxford University Press, Oxford

    Google Scholar 

  • Macpherson EA, Wagner ML (2008) Temporal weighting of cues for vertical-plane sound localization. Assoc Res Otolaryngol Abstr 31:882

    Google Scholar 

  • Markovitz NS, Pollak GD (1994) Binaural processing in the dorsal nucleus of the lateral lemniscus. Hear Res 73:121–140

    Article  CAS  PubMed  Google Scholar 

  • McCall DD, Freyman RL, Clifton RK (1998) Sudden changes in spectrum of an echo cause a breakdown of the precedence effect. Percept Psychophys 60:593–601

    Article  CAS  PubMed  Google Scholar 

  • Meddis R (1986) Simulation of mechanical to neural transduction in the auditory receptor. J Acoust Soc Am 79:702–711

    Article  CAS  PubMed  Google Scholar 

  • Mickey BJ, Dalack GW (2005) Auditory gating in schizophrenia: a pilot study of the precedence effect. Schizophr Res 73:327–331

    Article  PubMed  Google Scholar 

  • Mickey BJ, Middlebrooks JC (2001) Responses of auditory cortical neurons to pairs of sounds: correlates of fusion and localization. J Neurophysiol 86:1333–50

    CAS  PubMed  Google Scholar 

  • Mickey BJ, Middlebrooks JC (2005) Sensitivity of auditory cortical neurons to the locations of leading and lagging sounds. J Neurophysiol 94:979–989

    Article  PubMed  Google Scholar 

  • Miller SD, Litovksy RY, Kluender KR (2009) Predicting echo thresholds from speech onset characteristics. J Acoust Soc Am 125:EL135

    Google Scholar 

  • Moore JM, Tollin DJ, Yin TC (2008) Can measures of sound localization acuity be related to the precision of absolute location estimates? Hear Res 238:94–109

    Article  PubMed Central  PubMed  Google Scholar 

  • Nakamoto KT, Jones SJ, Palmer AR (2008) Descending projections from auditory cortex modulate sensitivity in the midbrain to cues for spatial position. J Neurophysiol 99:2347–2356

    Article  PubMed  Google Scholar 

  • Nelson BS, Takahashi TT (2008) Independence of echo-threshold and echo-delay in the barn owl. PLoS ONE 3(10):e3598

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nelson BS, Takahashi TT (2010) Spatial hearing in echoic environments: the role of the envelope in owls. Neuron 67:643–55

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Parham K, Zhao HB, Kim DO (1996) Responses of auditory nerve fibers of the unanesthetized decerebrate cat to click pairs as simulated echoes. J Neurophysiol 76:17–29

    CAS  PubMed  Google Scholar 

  • Parham K, Zhao HB, Ye Y, Kim DO (1998) Responses of anteroventral cochlear nucleus neurons of the unanesthetized decerebrate cat to click pairs as simulated echoes. Hear Res 125:131–46

    Article  CAS  PubMed  Google Scholar 

  • Pecka M, Zahn TP, Saunier-Rebori B, Siveke I, Wiegrebe L, Klug A, Pollak GD, Grothe B (2007) Inhibiting the inhibition: a neuronal network for sound localization in reverberant environments. J Neurosci 267:1782–1790

    Article  CAS  Google Scholar 

  • Populin LC (2006) Monkey sound localization: head-restrained vs head-unrestrained orienting. J Neurosci 26:9820–9832

    Article  CAS  PubMed  Google Scholar 

  • Rakerd B, Hartmann WM (1985) Localization of sound in rooms, II: the effects of a single reflecting surface. J Acoust Soc Am 78:524–533

    Article  CAS  PubMed  Google Scholar 

  • Rakerd B, Hartmann WM, Hsu J (2000) Echo suppression in the horizontal and median sagittal planes. J Acoust Soc Am 107:1061–1064

    Article  PubMed  Google Scholar 

  • Reale RA, Brugge JF (2000) Directional sensitivity of neurons in the primary auditory (AI) cortex of the cat to successive sounds ordered in time and space. J Neurophysiol 84:435–50

    CAS  PubMed  Google Scholar 

  • Roberts RA, Lister JJ (2004) Effects of age and hearing loss on gap detection and the precedence effect: broadband stimuli. J Speech Lang Hear Res 47:965–978

    Article  PubMed  Google Scholar 

  • Roberts RA, Besing J, Koehnke J (2002) Effects of hearing loss on echo thresholds. Ear Hear 23:349–357

    Article  PubMed  Google Scholar 

  • Roberts R, Koehnke J, Besing J (2003) Effects of noise and reverberation on the precedence effect in listeners with normal hearing and hearing loss. Am J Audiol 12:96–105

    Article  PubMed  Google Scholar 

  • Saberi K (1996) Observer weighting of interaural delays in filtered impulses. Percept Psychophys 58:1037–1046

    Article  CAS  PubMed  Google Scholar 

  • Saberi K, Antonio JV (2003) Precedence-effect thresholds for a population of untrained listeners as a function of stimulus intensity and interclick interval. J Acoust Soc Am 114:420–429

    Article  PubMed  Google Scholar 

  • Saberi K, Perrot DR (1995) Lateralization of click-trains with opposing onset and ongoing interaural delays. Acustica 81:272–275

    Google Scholar 

  • Saberi K, Antonio JV, Petrosyan A (2004) A population study of the precedence effect. Hear Res 191:1–13

    Article  PubMed  Google Scholar 

  • Sanders LD, Joh AS, Freyman RL, Keen R (2008) One sound or two? Object-related negativity indexes echo suppression. Percept Psychophys 70:1558–1570

    Article  PubMed Central  PubMed  Google Scholar 

  • Sanders LD, Zobel B, Keen R, Freyman RL (2011) Manipulations of listeners’ echo perception are reflected in event-related potentials. J Acoust Soc Am 129:301–309

    Article  PubMed Central  PubMed  Google Scholar 

  • Schnupp JWH, Carr CE (2009) On hearing with more than one ear: lessons from evolution. Nat Neurosci 12:692–697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schuchmann M, Hübner M, Wiegrebe L (2006) The absence of spatial echo suppression in the echolocating bats Megaderma lyra and Phyllostomus discolor. J Exp Biol 209:152–157

    Article  PubMed  Google Scholar 

  • Seeber BU, Hafter ER (2008) Parameters affecting the precedence-effect with cochlear implants. J Acoust Soc Am 123:3055

    Article  Google Scholar 

  • Seeber BU, Hafter ER (2011) Failure of the precedence effect with a noise band vocoder. J Acoust Soc Am 129:1509–1521

    Article  PubMed Central  PubMed  Google Scholar 

  • Shinn-Cunningham BG, Zurek PM, Durlach NI (1993) Adjustment and discrimination measurements of the precedence effect. J Acoust Soc Am 98:164–171

    Article  Google Scholar 

  • Shinn-Cunningham GC, Zurek PM, Durlach NI, Clifton RK (1995) Cross frequency interactions in the precedene effect. J Acoust Soc Am 98:164–171

    Article  CAS  PubMed  Google Scholar 

  • Shneiderman A, Oliver DL, Henkel C (1988) Connections of the dorsal nucleus of the lateral lemniscus: an inhibitory parallel pathway in the ascending auditory system? J Comp Neurol 276:188–208

    Article  CAS  PubMed  Google Scholar 

  • Shneiderman A, Stanforth DA, Henkel CK, Saint Marie RL (1999) Input-output relationships of the dorsal nucleus of the lateral lemniscus: possible substrate for the processing of dynamic spatial cues. J Comp Neurol 410:265–276

    Article  CAS  PubMed  Google Scholar 

  • Snow WB (1936) Sound reproducing system. U.S Patent 2,137,032.

  • Song P, Wang N, Wang H, Xie Y, Li H (2011) Pentobarbital anesthesia alters neural responses in the precedence effect. Neurosci Lett 498:72–77

    Article  CAS  PubMed  Google Scholar 

  • Spierer L, Bourquin NM-P, Tardif E, Murray MM, Clarke S (2009) Right hemispheric dominance for echo suppression. Neuropsychologia 47:465–472

    Article  PubMed  Google Scholar 

  • Spitzer MW, Takahashi TT (2006) Sound localization by barn owls in a simulated echoic environment. J Neurophysiol 95:3571–3584

    Article  PubMed  Google Scholar 

  • Spitzer MW, Bala AD, Takahashi TT (2003) Auditory spatial discrimination by barn owls in simulated echoic conditions. J Acoust Soc Am 113:1631–45

    Article  PubMed  Google Scholar 

  • Spitzer MW, Bala AD, Takahashi TT (2004) A neuronal correlate of the precedence effect is associated with spatial selectivity in the barn owl’s auditory midbrain. J Neurophysiol 92:2051–2070

    Article  PubMed  Google Scholar 

  • Stecker GC, Bibee JM (2014) Nonuniform temporal weighting of interaural time differences in 500 Hz tones. J Acoust Soc Am 135:3541–3547

    Article  PubMed  Google Scholar 

  • Stecker GC, Brown AD (2010) Temporal weighting of binaural cues revealed by detection of dynamic interaural differences in high-rate Gabor click trains. J Acoust Soc Am 127:3092–3103

    Article  PubMed Central  PubMed  Google Scholar 

  • Stecker GC, Brown AD (2012) Onset- and offset-specific effects in interaural level difference discrimination. J Acoust Soc Am 132:1573–1580

    Article  PubMed  Google Scholar 

  • Stecker GC, Hafter ER (2002) Temporal weighting in sound localization. J Acoust Soc Am 112:1046–1057

    Article  PubMed Central  PubMed  Google Scholar 

  • Stecker GC, Hafter ER (2009) A recency effect in sound localization? J Acoust Soc Am 125:3914–3924

    Article  PubMed Central  PubMed  Google Scholar 

  • Stecker GC, Ostreicher JO, Brown AD (2013) Temporal weighting functions for interaural time and level differences: III. Measurements using open-loop lateralization tasks. J Acoust Soc Am 134:1242–1252

    Article  PubMed Central  PubMed  Google Scholar 

  • Stellmack MA, Dye RH, Guzman SJ (1999) Observer weighting of binaural information in source and echo clicks. J Acoust Soc Am 105:377–387

    Article  CAS  PubMed  Google Scholar 

  • Stern RM, Zeilberg AS, Trahiotis C (1988) Lateralization of complex binaural stimuli: a weighted-image model. J Acoust Soc Am 84:952–964

    Article  Google Scholar 

  • Stevens SS, Newman EB (1936) The localization of actual sources of sound. Am J Psychol 48:297–306

    Article  Google Scholar 

  • Takanen M, Sanatala O, Pulkki V (2013) Visualization of functional count-comparison- based binaural auditory model output. Hear Res. doi:10.1016/j.heares.2013.10.004

    Google Scholar 

  • Tollin DJ (1998) Computational model of the lateralization of clicks and their echoes. In: Proceedings of the NATO Advanced Study Institute on Computational Hearing, S. Greenberg and M. Slaney (Eds.), (Amsterdam: IOS Press) pp. 77-82.

  • Tollin DJ, Henning GB (1998) Some aspects of the lateralization of echoed sound in man. I. The classical interaural-delay based precedence effect. J Acoust Soc Am 104:3030–3038

    Article  CAS  PubMed  Google Scholar 

  • Tollin DJ, Henning GB (1999) Some aspects of the lateralization of echoed sound in man. II. The role of the stimulus spectrum. J Acoust Soc Am 105:838–849

    Article  CAS  PubMed  Google Scholar 

  • Tollin DJ, Yin TCT (2003) Psychophysical investigation of an auditory spatial illusion in cats: the precedence effect. J Neurophysiol 90:2149–2162

    Article  PubMed  Google Scholar 

  • Tollin DJ, Populin LC, Yin TCT (2004) Neural correlates of the precedence effect in the inferior colliculus of behaving cats. J Neurophysiol 92:3286–3297

    Article  PubMed  Google Scholar 

  • Tollin DJ, Ruhland JL, Yin TCT (2009) The vestibulo-auricular reflex. J Neurophysiol 101:1258–1266

    Article  PubMed Central  PubMed  Google Scholar 

  • Tollin DJ, McClaine L, Yin TCT (2010) Short-latency, goal-directed movements of the pinnae to sounds that produce auditory spatial illusions. J Neurophysiol 103:446–457

    Article  PubMed Central  PubMed  Google Scholar 

  • Tollin DJ, Ruhland JL, Yin TCT (2013) The role of spectral composition of sounds on the localization of sound sources by cats. J Neurophysiol 109:1658–1668

    Article  PubMed Central  PubMed  Google Scholar 

  • Tolnai S, Litovsky RY, King AJ (2014) The precedence effect and its buildup and breakdown in ferrets and humans. J Acoust Soc Am 135:1406–1418

    Article  PubMed Central  PubMed  Google Scholar 

  • van Hoesel RJM (2007) Sensitivity to binaural timing in bilateral cochlear implant users. J Acoust Soc Am 121:2192–2206

    Article  PubMed  Google Scholar 

  • Wallach H, Newman EB, Rosenzweig R (1949) The precedence effect in sound localization. Am J Psychiatr 62:315–336

    CAS  Google Scholar 

  • Warncke H (1941) The fundamentals of room-related stereophonic reproduction in sound films. Akust Zh 6:174–188

    Google Scholar 

  • Wickesberg RE (1996) Rapid inhibition in the cochlear nuclear complex of the chinchilla. J Acoust Soc Am 100:1691–1702

  • Wickesberg RE, Oertel D (1990) Delayed, frequency-specific inhibition in the cochlear nuclei of mice: a mechanism for monaural echo suppression. J Neurosci 10:1762–1768

  • Wightman FL, Kistler DJ (1992) The dominant role of low-frequency interaural time differences in sound localization. J Acoust Soc Am 91:1648–1661

    Article  CAS  PubMed  Google Scholar 

  • Winer JA (2006) Decoding the auditory corticofugal systems. Hear Res 212:1–8

    Article  PubMed  Google Scholar 

  • Wolf S (1991) Untersuchungen zur Lokalisation von Schallquellen in geschlossenen Räumen, Dissertation, Ruhr-Universitaät Bochum

  • Wolf M, Schuchmann M, Wiegrebe L (2010) Localization dominance and the effect of frequency in the Mongolian Gerbil, Meriones unguiculatus. J Comp Physiol A 196:463–470

    Article  Google Scholar 

  • Xia J, Shinn-Cunningham BG (2011) Isolating mechnisms that influence measures of the precedence effect: theoretical predictions and behavioral tests. J Acoust Soc Am 130:866–882

    Article  PubMed Central  PubMed  Google Scholar 

  • Xia J, Brughera A, Colburn HS, Shinn-Cunningham BG (2010) Physiological and psychophysical modeling of the precedence effect. J Assoc Res Otolaryngol 11:495–513

    Article  PubMed Central  PubMed  Google Scholar 

  • Yang X, Grantham DW (1997) Echo suppression and discrimination suppression aspects of the precedence effect. Percept Psychophys 59:1108–1117

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Pollak GD (1994) Binaural inhibition in the dorsal nucleus of the lateral lemniscus of the mustache bat affects responses for multiple sounds. Aud Neurosci 1:1–17

    Google Scholar 

  • Yin TCT (1994) Physiological correlates of the precedence effect and summing localization in the inferior colliculus of the cat. J Neurosci 14:5170–86

    CAS  PubMed  Google Scholar 

  • Yost WA (2007) Lead-lag precedence paradigm as a function of relative level and number of lag stimuli. Proceedings of the 19th International Congress on Acoustics. Madrid, Spain

    Google Scholar 

  • Yost WA, Soderquist DR (1984) The precedence effect: revisited. J Acoust Soc Am 76:1377–1383

    Article  CAS  PubMed  Google Scholar 

  • Zaslavski GL (2008) Localization of brief sounds by a bottlenose dolphin. POMA: Acoustics 08 Paris:2803-2808.

  • Zilany MSA, Bruce IC, Nelson PC, Carney LH (2009) A phenomenological model of the synapse between the inner hair cell and auditory nerve: long-term adaptation with power-law dynamics. J Acoust Soc Am 126:2390–2412

    Article  PubMed Central  PubMed  Google Scholar 

  • Zurek PM (1980) The precedence effect and its possible role in the avoidance of interaural ambiguities. J Acoust Soc Am 67:952–964

    Article  Google Scholar 

  • Zurek PM (1987) The precedence effect. In: Yost WA, Gourevitch G (eds) Directional hearing. Springer-Verlag, New York, pp 85–105

    Chapter  Google Scholar 

  • Zwislocki J, Feldman RS (1956) Just noticeable differences in dichotic phase. J Acoust Soc Am 28:860–864

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Editor-in-Chief Paul Manis, Associate Editor Ruth Anne Eatock and two anonymous reviewers for comments on the manuscript. This work was supported by the National Institute on Deafness and Other Communication Disorders (NIDCD) grant R01-DC011555 (DJT), R01-DC011548 (GCS), and F32-DC013927 (ADB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew D. Brown.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brown, A.D., Stecker, G.C. & Tollin, D.J. The Precedence Effect in Sound Localization. JARO 16, 1–28 (2015). https://doi.org/10.1007/s10162-014-0496-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-014-0496-2

Keywords

Navigation