Skip to main content
Log in

Effects of Contralateral Acoustic Stimulation on Spontaneous Otoacoustic Emissions and Hearing Threshold Fine Structure

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Medial olivocochlear (MOC) influence on cochlear mechanics can be noninvasively, albeit indirectly, explored via the effects of contralateral acoustic stimulation (CAS) on otoacoustic emissions. CAS-mediated effects are particularly pronounced for spontaneous otoacoustic emissions (SOAEs), which are typically reduced in amplitude and shifted upward in frequency by CAS. We investigated whether similar frequency shifts and magnitude reductions were observed behaviorally in the fine structure of pure-tone hearing thresholds, a phenomenon thought to share a common underlying mechanism with SOAEs. In normal-hearing listeners, fine-resolution thresholds were obtained over a narrow frequency range centered on the frequency of an SOAE, both in the absence and presence of 60-dB SPL broadband CAS. While CAS shifted threshold fine structure patterns and SOAEs upward in frequency by a comparable amount, little reduction in the presence or depth of fine structure was observed at frequencies near those of SOAEs. In fact, CAS typically improved thresholds, particularly at threshold minima, and increased fine structure depth when reductions in the amplitude of the associated SOAE were less than 10 dB. Additional measurements made at frequencies distant from SOAEs, or near SOAEs that were more dramatically reduced in amplitude by the CAS, revealed that CAS tended to elevate thresholds and reduce threshold fine structure depth. The results suggest that threshold fine structure is sensitive to MOC-mediated changes in cochlear gain, but that SOAEs complicate the interpretation of threshold measurements at nearby frequencies, perhaps due to masking or other interference effects. Both threshold fine structure and SOAEs may be significant sources of intersubject and intrasubject variability in psychoacoustic investigations of MOC function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  • Abdala C, Mishra SK, Williams TL (2009) Considering distortion product otoacoustic emission fine structure in measurements of the medial olivocochlear reflex. J Acoust Soc Am 125:1584–1594

    Article  PubMed Central  PubMed  Google Scholar 

  • Aguilar E, Eustaquio-Martín A, Lopez-Poveda EA (2013) Contralateral efferent reflex effects on threshold and suprathreshold psychoacoustical tuning curves at low and high frequencies. J Assoc Res Otolaryngol 14:341–357

    Article  PubMed Central  PubMed  Google Scholar 

  • Bergevin C, Fulcher A, Richmond S, Velenovsky D, Lee J (2012) Interrelationships between spontaneous and low-level stimulus-frequency otoacoustic emissions in humans. Hear Res 285:20–28

    Article  PubMed  Google Scholar 

  • Burns EM (2009) Long-term stability of spontaneous otoacoustic emissions. J Acoust Soc Am 125:3166–3176

    Article  PubMed Central  PubMed  Google Scholar 

  • Cody AR, Johnstone BM (1982) Temporary threshold shift modified by binaural acoustic stimulation. Hear Res 6:199–205

    Article  CAS  PubMed  Google Scholar 

  • Cohen MF (1982) Detection threshold microstructure and its effect on temporal integration data. J Acoust Soc Am 71:405–409

    Article  CAS  PubMed  Google Scholar 

  • Cooper NP, Guinan JJ (2003) Separate mechanical processes underlie fast and slow effects of medial olivocochlear efferent activity. J Phsyiol 548:307–312

    Article  CAS  Google Scholar 

  • Davis H (1983) An active process in cochlear mechanics. Hear Res 9:79–90

    Article  CAS  PubMed  Google Scholar 

  • Deeter R, Abel R, Calandruccio L, Dhar S (2009) Contralateral acoustic stimulation alters the magnitude and phase of distortion product otoacoustic emissions. J Acoust Soc Am 126:2413–2424

    Article  PubMed Central  PubMed  Google Scholar 

  • Delano PH, Elgueda D, Hamame CM, Robles L (2007) Selective attention to visual stimuli reduces cochlear sensitivity in chinchillas. J Neurosci 27:4146–4153

    Article  CAS  PubMed  Google Scholar 

  • Dieler R, Shehata-Dieler WE, Brownell WE (1991) Concomitant salicylate-induced alterations of outer hair cell subsurface cisternae and electromotility. J Neurocytol 20:637–653

    Article  CAS  PubMed  Google Scholar 

  • Dirks D, Malmquist C (1965) Shifts in air-conduction thresholds produced by pulsed and continuous contralateral masking. J Acoust Soc Am 37:631–637

    Article  CAS  PubMed  Google Scholar 

  • Dolan DF, Guo MH, Nuttall AL (1997) Frequency-dependent enhancement of basilar membrane velocity during olivocochlear bundle stimulation. J Acoust Soc Am 102:3587–3596

    Article  CAS  PubMed  Google Scholar 

  • Elliott E (1958) A ripple effect in the audiogram. Nature 181:1076

    Article  CAS  PubMed  Google Scholar 

  • Epp B, Verhey JL, Mauermann M (2010) Modeling cochlear dynamics: interrelation between cochlea mechanics and psychoacoustics. J Acoust Soc Am 128:1870–1883

    Article  PubMed  Google Scholar 

  • Francis NA, Guinan JJ (2010) Acoustic stimulation of human medial olivocochlear efferents reduces stimulus-frequency and click-evoked otoacoustic emission delays: implications for cochlear filter bandwidths. Hear Res 267:36–45

    Article  PubMed Central  PubMed  Google Scholar 

  • Furst M, Reshef I, Attias J (1992) Manifestations of intense noise stimulation on spontaneous otoacoustic emission and threshold microstructure: experiment and model. J Acoust Soc Am 91:1003–1014

    Article  CAS  PubMed  Google Scholar 

  • Galambos R (1956) Suppression of auditory nerve activity by stimulation of efferent fibers to cochlea. J Neurophysiol 19:424–437

    CAS  PubMed  Google Scholar 

  • Garinis A, Werner L, Abdala C (2011) The relationship between MOC reflex and masked threshold. Hear Res 282:128–137

    Article  PubMed Central  PubMed  Google Scholar 

  • Gjaevenes K, Vigran E (1967) Contralateral masking: an attempt to determine the role of the aural reflex. J Acoust Soc Am 42:580–585

    Article  CAS  PubMed  Google Scholar 

  • Guinan JJ (1986) Effect of efferent neural activity on cochlear mechanics. Scand Audiol Suppl 25:53–62

    PubMed  Google Scholar 

  • Guinan JJ (2006) Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Ear Hear 27:589–607

    Article  PubMed  Google Scholar 

  • Guinan JJ (2010) Cochlear efferent innervation and function. Curr Opin Otolaryngol Head Neck Surg 18:447–453

    Article  PubMed  Google Scholar 

  • Harrison WA, Burns EM (1993) Effects of contralateral acoustic stimulation on spontaneous otoacoustic emissions. J Acoust Soc Am 94:2649–2658

    Article  CAS  PubMed  Google Scholar 

  • Heise SJ, Mauermann M, Verhey JL (2009a) Threshold fine structure affects amplitude modulation perception. J Acoust Soc Am 125:EL33–EL38

    Article  PubMed  Google Scholar 

  • Heise SJ, Mauermann M, Verhey JL (2009b) Investigating possible mechanisms behind the effect of threshold fine structure on amplitude modulation perception. J Acoust Soc Am 126:2490–2500

    Article  PubMed  Google Scholar 

  • Ingham JG (1957) The effect upon monaural sensitivity of continuous stimulation of the opposite ear. Q J Exp Psychol 9:52–60

    Article  Google Scholar 

  • Ingham JG (1959) Variations in cross-masking with frequency. J Exp Psychol 58:199–205

    Article  CAS  PubMed  Google Scholar 

  • Jennings SG, Strickland EA (2012) Evaluating the effects of olivocochlear feedback on psychophysical measures of frequency selectivity. J Acoust Soc Am 132:2483–2496

    Article  PubMed Central  PubMed  Google Scholar 

  • Kapadia S, Lutman ME (1999) Reduced ‘audiogram ripple’ in normally-hearing subjects with weak otoacoustic emissions. Audiology 38:257–261

    Article  CAS  PubMed  Google Scholar 

  • Kawase T, Liberman MC (1993) Antimasking effects of the olivocochlear reflex. I. Enhancement of compound action potentials to masked tones. J Neurophysiol 70:2519–2532

    CAS  PubMed  Google Scholar 

  • Kawase T, Delgutte B, Liberman MC (1993) Antimasking effects of the olivocochlear reflex. II. Enhancement of auditory-nerve response to masked tones. J Neurophysiol 70:2533–2549

    CAS  PubMed  Google Scholar 

  • Kawase T, Ogura M, Hidaka H, Sasaki N, Suzuki Y, Takasaka T (2000) Effects of contralateral noise on measurement of the psychophysical tuning curve. Hear Res 142:63–70

    Article  CAS  PubMed  Google Scholar 

  • Kawase T, Ogura M, Sato T, Kobayashi T, Suzuki Y (2003) Effects of contralateral noise on the measurement of auditory threshold. Tohoku J Exp Med 200:129–135

    Article  PubMed  Google Scholar 

  • Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64:1386–1391

    Article  CAS  PubMed  Google Scholar 

  • Kemp DT (1979a) The evoked cochlear mechanical response and the auditory microstructure—evidence for a new element in cochlear mechanics. Scand Audiol Suppl:35–47

  • Kemp DT (1979b) Evidence of mechanical nonlinearity and frequency selective wave amplification in the cochlea. Arch Otorhinolaryngol 224:37–45

    Article  CAS  PubMed  Google Scholar 

  • Kemp DT (1981) Physiologically active cochlear micromechanics-one source of tinnitus. In: Evered D, Lawrenson G (eds) Tinnitus - Ciba Foundation Symposium 85. Pitman, London, pp 54–81

  • Kujawa SG, Liberman MC (1997) Conditioning-related protection from acoustic injury: effects of chronic deefferentation and sham surgery. J Neurophysiol 78:3095–3106

    CAS  PubMed  Google Scholar 

  • Kulawiec JT, Orlando MS (1995) The contribution of spontaneous otoacoustic emissions to the click evoked otoacoustic emissions. Ear Hear 16:515–520

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Long G (2012) Stimulus characteristics which lessen the impact of threshold fine structure on estimates of hearing status. Hear Res 283:24–32

    Article  PubMed  Google Scholar 

  • Lee J, Dhar S, Abel R, Banakis R, Grolley E, Lee J, Zecker S, Siegel J (2012) Behavioral hearing thresholds between 0.125 and 20 kHz using depth-compensated ear simulator calibration. Ear Hear 33:315–329

    Article  PubMed Central  PubMed  Google Scholar 

  • Long GR (1984) The microstructure of quiet and masked thresholds. Hear Res 15:73–87

    Article  CAS  PubMed  Google Scholar 

  • Long G (1998) Perceptual consequences of the interactions between spontaneous otoacoustic emissions and external tones. I. Monaural diplacusis and aftertones. Hear Res 119:49–60

    Article  CAS  PubMed  Google Scholar 

  • Long GR, Talmadge CL (1997) Spontaneous otoacoustic emission frequency is modulated by heartbeat. J Acoust Soc Am 102:2831–2848

    Article  CAS  PubMed  Google Scholar 

  • Long G, Tubis A (1988a) Investigations into the nature of the association between threshold microstructure and otoacoustic emissions. Hear Res 36:125–138

    Article  CAS  PubMed  Google Scholar 

  • Long G, Tubis A (1988b) Modification of spontaneous and evoked otoacoustic emissions and associated psychoacoustic microstructure by aspirin consumption. J Acoust Soc Am 84:1343–1353

    Article  CAS  PubMed  Google Scholar 

  • Long GR, Tubis A, Jones KL (1991) Modeling synchronization and suppression of spontaneous otoacoustic emissions using Van der Pol oscillators: effects of aspirin administration. J Acoust Soc Am 89:1201–1212

    Article  CAS  PubMed  Google Scholar 

  • Maison SF, Usubuchi H, Liberman MC (2013) Efferent feedback minimizes cochlear neuropathy from moderate noise exposure. J Neurosci 33:5542–5552

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mauermann M, Long GR, Kollmeier B (2004) Fine structure of hearing threshold and loudness perception. J Acoust Soc Am 116:1066–1080

    Article  PubMed  Google Scholar 

  • McFadden D, Mishra R (1993) On the relation between hearing sensitivity and otoacoustic emissions. Hear Res 71:208–213

    Article  CAS  PubMed  Google Scholar 

  • Micheyl C, Carbonnel O, Collet L (1995a) Medial olivocochlear system and loudness adaptation: differences between musicians and non-musicians. Brain Cogn 29:127–136

    Article  CAS  PubMed  Google Scholar 

  • Micheyl C, Morlet T, Giraud AL, Collet L, Morgon A (1995b) Contralateral suppression of evoked otoacoustic emissions and detection of a multi-tone complex in noise. Acta Otolaryngol 115:178–182

    Article  CAS  PubMed  Google Scholar 

  • Micheyl C, Perrot X, Collet L (1997) Relationship between auditory intensity discrimination in noise and olivocochlear efferent system activity in humans. Behav Neurosci 111:801–807

    Article  CAS  PubMed  Google Scholar 

  • Morand-Villeneuve N, Garnier S, Grimault N, Veuillet E, Collet L, Micheyl C (2002) Medial olivocochlear bundle activation and perceived auditory intensity in humans. Physiol Behav 77:311–320

    Article  CAS  PubMed  Google Scholar 

  • Mott JB, Norton SJ, Neely ST, Warr WB (1989) Changes in spontaneous otoacoustic emissions produced by acoustic stimulation of the contralateral ear. Hear Res 38:229–242

    Article  CAS  PubMed  Google Scholar 

  • Moulin A, Collet L, Veuillet E, Morgon A (1993) Interrelations between transiently evoked otoacoustic emissions, spontaneous otoacoustic emissions and acoustic distortion products in normally hearing subjects. Hear Res 65:216–233

    Article  CAS  PubMed  Google Scholar 

  • Mountain DC (1980) Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics. Science 210:71–72

    Article  CAS  PubMed  Google Scholar 

  • Murugasu E, Russell IJ (1996) The effect of efferent stimulation on basilar membrane displacement in the basal turn of the guinea pig cochlea. J Neurosci 16:325–332

    CAS  PubMed  Google Scholar 

  • Nieder P, Nieder I (1970a) Stimulation of efferent olivocochlear bundle causes release from low level masking. Nature 227:184–185

    Article  CAS  PubMed  Google Scholar 

  • Nieder P, Nieder I (1970b) Antimasking effect of crossed olivocochlear bundle stimulation with loud clicks in guinea pig. Exp Neurol 28:179–188

    Article  CAS  PubMed  Google Scholar 

  • Norton SJ, Mott JB, Champlin CA (1989) Behavior of spontaneous otoacoustic emissions following intense ipsilateral acoustic stimulation. Hear Res 38:243–258

    Article  CAS  PubMed  Google Scholar 

  • Nuttall AL, Grosh K, Zheng J, Boer E, Zou Y, Ren T (2004) Spontaneous basilar membrane oscillation and otoacoustic emission at 15 kHz in a guinea pig. J Assoc Res Otolaryngol 5:337–348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Powers NL, Salvi RJ, Wang J, Spongr V, Qiu CX (1995) Elevation of auditory thresholds by spontaneous cochlear oscillations. Nature 375:585–587

    Article  CAS  PubMed  Google Scholar 

  • Quaranta N, Scaringi A, Nahum S, Quaranta A (2005) Effects of efferent acoustic reflex activation on psychoacoustical tuning curves in humans. Acta Otolaryngol 125:520–523

    Article  PubMed  Google Scholar 

  • Rajan R, Johnstone BM (1988) Electrical stimulation of cochlear efferents at the round window reduces auditory desensitization in guinea pigs. I. Dependence on electrical stimulation parameters. Hear Res 36:53–73

    Article  CAS  PubMed  Google Scholar 

  • Robles L, Delano PH (2008) Efferent system. In: Dallos P, Oertel D (eds) The senses: a comprehensive reference. Academic Press, London, pp 413–445

    Google Scholar 

  • Scharf B, Magnan J, Chays A (1997) On the role of the olivocochlear bundle in hearing: 16 case studies. Hear Res 103:101–122

    Article  CAS  PubMed  Google Scholar 

  • Schloth E (1983) Relation between spectral composition of spontaneous otoacoustic emissions and fine-structure of threshold in quiet. Acustica 53:250–256

    Google Scholar 

  • Schloth E, Zwicker E (1983) Mechanical and acoustical influences on spontaneous oto-acoustic emissions. Hear Res 11:285–293

    Article  CAS  PubMed  Google Scholar 

  • Shehata WE, Brownell WE, Dieler R (1991) Effects of salicylate on shape, electromotility and membrane characteristics of isolated outer hair cells from guinea pig cochlea. Acta Otolaryngol 111:707–718

    Article  CAS  PubMed  Google Scholar 

  • Shera CA (2003) Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves. J Acoust Soc Am 114:244–262

    Article  PubMed  Google Scholar 

  • Siegel JH, Kim DO (1982) Efferent neural control of cochlear mechanics? Olivocochlear bundle stimulation affects cochlear biomechanical nonlinearity. Hear Res 6:171–182

    Article  CAS  PubMed  Google Scholar 

  • Smith DW, Turner DA, Henson MM (2000) Psychophysical correlates of contralateral efferent suppression. I. The role of the medial olivocochlear system in “central masking” in nonhuman primates. J Acoust Soc Am 107:933–941

    Article  CAS  PubMed  Google Scholar 

  • Smurzynski J, Probst R (1998) The influence of disappearing and reappearing spontaneous otoacoustic emissions on one subject’s threshold microstructure. Hear Res 115:197–205

    Article  CAS  PubMed  Google Scholar 

  • Sun XM (2008) Distortion product otoacoustic emission fine structure is responsible for variability of distortion product otoacoustic emission contralateral suppression. J Acoust Soc Am 123:4310–4320

    Article  PubMed  Google Scholar 

  • Talmadge CL, Tubis A, Long GR, Piskorski P (1998) Modeling otoacoustic emission and hearing threshold fine structures. J Acoust Soc Am 104:1517–1543

    Article  CAS  PubMed  Google Scholar 

  • Vinay MBCJ (2008) Effects of activation of the efferent system on psychophysical tuning curves as a function of signal frequency. Hear Res 240:93–101

    Article  CAS  PubMed  Google Scholar 

  • Ward WD (1961) Studies on the aural reflex. I. Contralateral remote masking as an indicator of reflex activity. J Acoust Soc Am 33:1034–1045

    Article  Google Scholar 

  • Wegel RL, Lane CE (1924) The auditory masking of one pure tone by another and its probable relation to the dynamics of the inner ear. Phys Rev 23:266–285

    Article  Google Scholar 

  • Wiederhold ML, Kiang NY (1970) Effects of electric stimulation of the crossed olivocochlear bundle on single auditory-nerve fibers in the cat. J Acoust Soc Am 48:950–965

    Article  CAS  PubMed  Google Scholar 

  • Wilson JP (1980) Evidence for a cochlear origin for acoustic re-emissions, threshold fine-structure and tonal tinnitus. Hear Res 2:233–252

    Article  CAS  PubMed  Google Scholar 

  • Wilson JP, Sutton GJ (1981) Acoustic correlates of tonal tinnitus. In: Evered D, Lawrenson G (eds) Tinnitus - Ciba Foundation Symposium 85. Pitman, London, pp 82–107

  • Winslow RL, Sachs MB (1987) Effect of electrical stimulation of the crossed olivocochlear bundle on auditory nerve response to tones in noise. J Neurophysiol 57:1002–1021

    CAS  PubMed  Google Scholar 

  • Youngblood J, Martin FN (1981) On the relationship of stapedial contraction to central masking. J Aud Res 21:45–49

    CAS  PubMed  Google Scholar 

  • Zhao W, Dhar S (2010) The effect of contralateral acoustic stimulation on spontaneous otoacoustic emissions. J Assoc Res Otolaryngol 11:53–67

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhao W, Dhar S (2011) Fast and slow effects of medial olivocochlear efferent activity in humans. PLoS One 6:e18725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao W, Dhar S (2012) Frequency tuning of the contralateral medial olivocochlear reflex in humans. J Neurophysiol 108:25–30

    Article  PubMed Central  PubMed  Google Scholar 

  • Zurek PM (1981) Spontaneous narrowband acoustic signals emitted by human ears. J Acoust Soc Am 69:514–523

    Article  CAS  PubMed  Google Scholar 

  • Zwicker E (1986) Spontaneous oto-acoustic emissions, threshold in quiet, and just noticeable amplitude modulation at low levels. In: Moore BCJ, Patterson RD (eds) Auditory frequency selectivity. Plenum, New York, pp 49–59

    Chapter  Google Scholar 

  • Zwicker E, Schloth E (1984) Interrelation of different oto-acoustic emissions. J Acoust Soc Am 75:1148–1154

    Article  CAS  PubMed  Google Scholar 

  • Zwislocki J (1953) Acoustic attenuation between the ears. J Acoust Soc Am 25:752–759

    Article  Google Scholar 

  • Zwislocki JJ (1972) A theory of central auditory masking and its partial validation. J Acoust Soc Am 52:644–659

    Article  Google Scholar 

  • Zwislocki JJ, Damianopoulos EN, Buining E, Glantz J (1967) Central masking: some steady-state and transient effects. Percept Psychophys 2:59–64

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Rachael Baiduc, Glenis Long, Gayla Poling, Jonathan Siegel, and Wei Zhao for helpful discussions of the data. A portion of this work was presented at the 161st meeting of the Acoustical Society of America, May 2011, in Seattle, WA. This research was partially supported by NIDCD grants R01 DC008420 and T32 DC009399.

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James B. Dewey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dewey, J.B., Lee, J. & Dhar, S. Effects of Contralateral Acoustic Stimulation on Spontaneous Otoacoustic Emissions and Hearing Threshold Fine Structure. JARO 15, 897–914 (2014). https://doi.org/10.1007/s10162-014-0485-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-014-0485-5

Keywords

Navigation