Skip to main content
Log in

Multiple Indices of the ‘Bounce’ Phenomenon Obtained from the Same Human Ears

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Loud low-frequency sounds can induce temporary oscillatory changes in cochlear sensitivity, which have been termed the ‘bounce’ phenomenon. The origin of these sensitivity changes has been attributed to slow fluctuations in cochlear homeostasis, causing changes in the operating points of the outer hair cell mechano-electrical and electro-mechanical transducers. Here, we acquired three objective and subjective measures resulting in a comprehensive dataset of the bounce phenomenon in each of 22 normal-hearing human subjects. We analysed the level and phase of cubic and quadratic distortion product otoacoustic emissions and the auditory thresholds before and after presentation of a low-frequency stimulus (30 Hz sine wave, 120 dB SPL, 90 s) as a function of time. In addition, the perceived loudness of temporary, tinnitus-like sensations occurring in all subjects after cessation of the low-frequency stimulus was tracked over time. The majority of the subjects (70 %) showed a significant, biphasic change of quadratic, but not cubic, distortion product otoacoustic emissions of about 3–4 dB. Eighty-six percent of the tested subjects showed significant alterations of hearing thresholds after low-frequency stimulation. Four different types of threshold changes were observed, namely monophasic desensitisations (the majority of cases), monophasic sensitisations, biphasic alterations with initial sensitisation and biphasic alterations with initial desensitisation. The similar duration of the three bounce phenomenon measures indicates a common origin. The current findings are consistent with the hypothesis that slow oscillations of homeostatic control mechanisms and associated operating point shifts within the cochlea are the source of the bounce phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  • Abel C, Wittekindt A, Kossl M (2009) Contralateral acoustic stimulation modulates low-frequency biasing of DPOAE: efferent influence on cochlear amplifier operating state? J Neurophysiol 101:2362–2371

    Article  PubMed  Google Scholar 

  • Althen H, Wittekindt A, Gaese B, Kossl M, Abel C (2012) Effect of contralateral pure tone stimulation on distortion emissions suggests a frequency-specific functioning of the efferent cochlear control. J Neurophysiol 107:1962–1969

    Article  CAS  PubMed  Google Scholar 

  • Belinchon A, Perez-Garrigues H, Tenias JM, Lopez A (2011) Hearing assessment in Meniere’s disease. Laryngoscope 121:622–626

    Article  PubMed  Google Scholar 

  • Berlinger NT (2011) Meniere’s disease: new concepts, new treatments. Minn Med 94:33–36

    PubMed  Google Scholar 

  • Bian L (2004) Cochlear compression: effects of low-frequency biasing on quadratic distortion product otoacoustic emission. J Acoust Soc Am 116:3559–3571

    Article  PubMed  Google Scholar 

  • Bian L, Chertoff ME, Miller E (2002) Deriving a cochlear transducer function from low-frequency modulation of distortion product otoacoustic emissions. J Acoust Soc Am 112:198–210

    Article  PubMed  Google Scholar 

  • Bian L, Linhardt EE, Chertoff ME (2004) Cochlear hysteresis: observation with low-frequency modulated distortion product otoacoustic emissions. J Acoust Soc Am 115:2159–2172

    Article  PubMed  Google Scholar 

  • Brown DJ, Gibson WP (2011) On the differential diagnosis of Meniere’s disease using low-frequency acoustic biasing of the 2f1-f2 DPOAE. Hear Res 282:119–127

    Article  PubMed  Google Scholar 

  • Brown DJ, Hartsock JJ, Gill RM, Fitzgerald HE, Salt AN (2009) Estimating the operating point of the cochlear transducer using low-frequency biased distortion products. J Acoust Soc Am 125:2129–2145

    Article  PubMed  Google Scholar 

  • Chermak GD, Dengerink JE (1987) Characteristics of temporary noise-induced tinnitus in male and female subjects. Scand Audiol 16:67–73

    CAS  PubMed  Google Scholar 

  • Cody AR, Russell IJ (1995) Time-varying voltage responses of mammalian hair cells to isoamplitude acoustic stimulation. Audit Neurosci 1:351–361

    Google Scholar 

  • Dallos P (1986) Neurobiology of cochlear inner and outer hair cells: intracellular recordings. Hear Res 22:185–198

    Article  CAS  PubMed  Google Scholar 

  • Douek E, Reid J (1968) The diagnostic value of tinnitus pitch. J Laryngol Otol 82:1039–1042

    Article  CAS  PubMed  Google Scholar 

  • Drexl M, Gurkov R, Krause E (2012) Low-frequency modulated quadratic and cubic distortion product otoacoustic emissions in humans. Hear Res 287:91–101

    Article  PubMed  Google Scholar 

  • Flock A, Flock B (2000) Hydrops in the cochlea can be induced by sound as well as by static pressure. Hear Res 150:175–188

    Article  CAS  PubMed  Google Scholar 

  • Frank G, Kossl M (1995) The shape of 2f1-f2 suppression tuning curves reflects basilar membrane specializations in the mustached bat, Pteronotus parnellii. Hear Res 83:151–160

    Article  CAS  PubMed  Google Scholar 

  • Frank G, Kossl M (1996) The acoustic two-tone distortions 2f1-f2 and f2-f1 and their possible relation to changes in the operating point of the cochlear amplifier. Hear Res 98:104–115

    Article  CAS  PubMed  Google Scholar 

  • Frank G, Kossl M (1997) Acoustical and electrical biasing of the cochlea partition. Effects on the acoustic two tone distortions f2-f1 and 2f1-f2. Hear Res 113:57–68

    Article  CAS  PubMed  Google Scholar 

  • Han BI, Lee HW, Kim TY, Lim JS, Shin KS (2009) Tinnitus: characteristics, causes, mechanisms, and treatments. J Clin Neurol 5:11–19

    Article  PubMed Central  PubMed  Google Scholar 

  • Harding GW, Bohne BA, Lee SC, Salt AN (2007) Effect of infrasound on cochlear damage from exposure to a 4 khz octave band of noise. Hear Res 225:128–138

    Article  PubMed Central  PubMed  Google Scholar 

  • Henin S, Thompson S, Abdelrazeq S, Long GR (2011) Changes in amplitude and phase of distortion-product otoacoustic emission fine-structure and separated components during efferent activation. J Acoust Soc Am 129:2068–2079

    Article  PubMed  Google Scholar 

  • Hirschfelder A, Gossow-Muller-Hohenstein E, Hensel J, Scholz G, Mrowinski D (2005) Diagnosis of endolymphatic hydrops using low frequency modulated distortion product otoacoustic emissions. HNO 53:612–617

    Article  CAS  PubMed  Google Scholar 

  • Hirsh IJ, Ward WD (1952) Recovery of the auditory threshold after strong acoustic stimulation. J Acoust Soc Am 24:131–141

    Article  Google Scholar 

  • Hughes JR (1954) Auditory sensitization. J Acoust Soc Am 26:1064–1070

    Article  Google Scholar 

  • Kalluri R, Shera CA (2001) Distortion-product source unmixing: a test of the two-mechanism model for DPOAE generation. J Acoust Soc Am 109:622–637

    Article  CAS  PubMed  Google Scholar 

  • Kemp DT (1978) Stimulated acoustic emissions from within the human auditory system. J Acoust Soc Am 64:1386–1391

    Article  CAS  PubMed  Google Scholar 

  • Kemp DT (1986) Otoacoustic emissions, travelling waves and cochlear mechanisms. Hear Res 22:95–104

    Article  CAS  PubMed  Google Scholar 

  • Kemp DT, Brill OJ (2009) Slow oscillatory cochlear adaptation to brief over stimulation: cochlear homeostasis dynamics. In: Cooper NP, Kemp DT (eds) Concepts and challenges in the biophysics of hearing. World Scientific, Singapore, pp 168–174

    Chapter  Google Scholar 

  • Kirk DL, Patuzzi RB (1997) Transient changes in cochlear potentials and DPOAEs after low-frequency tones: the ‘two-minute bounce’ revisited. Hear Res 112:49–68

    Article  CAS  PubMed  Google Scholar 

  • Kirk DL, Moleirinho A, Patuzzi RB (1997) Microphonic and DPOAE measurements suggest a micromechanical mechanism for the ‘bounce’ phenomenon following low-frequency tones. Hear Res 112:69–86

    Article  CAS  PubMed  Google Scholar 

  • Lichtenhan JT (2012) Effects of low-frequency biasing on otoacoustic and neural measures suggest that stimulus-frequency otoacoustic emissions originate near the peak region of the traveling wave. J Assoc Res Otolaryngol 13:17–28

    Article  PubMed Central  PubMed  Google Scholar 

  • Lin HW, Furman AC, Kujawa SG, Liberman MC (2011) Primary neural degeneration in the guinea pig cochlea after reversible noise-induced threshold shift. J Assoc Res Otolaryngol 12:605–616

    Article  PubMed Central  PubMed  Google Scholar 

  • Lindsay JR, Von Schulthess G (1958) An unusual case of labyrinthine hydrops. Acta Otolaryngol 49:315–324

    Article  CAS  PubMed  Google Scholar 

  • Lindsay JR, Kohut RI, Sciarra PA (1967) Meniere’s disease: pathology and manifestations. Ann Otol Rhinol Laryngol 76:5–22

    CAS  PubMed  Google Scholar 

  • Long GR, Talmadge CL, Lee J (2008) Measuring distortion product otoacoustic emissions using continuously sweeping primaries. J Acoust Soc Am 124:1613–1626

    Article  PubMed  Google Scholar 

  • Lukashkin AN, Russell IJ (2005) Dependence of the DPOAE amplitude pattern on acoustical biasing of the cochlear partition. Hear Res 203:45–53

    Article  PubMed  Google Scholar 

  • Mammano F, Bortolozzi M, Ortolano S, Anselmi F (2007) Ca2+ signaling in the inner ear. Physiology (Bethesda) 22:131–144

    Article  CAS  Google Scholar 

  • Marquardt T, Hensel J, Mrowinski D, Scholz G (2007) Low-frequency characteristics of human and guinea pig cochleae. J Acoust Soc Am 121:3628–3638

    Article  PubMed  Google Scholar 

  • Mauermann M, Kollmeier B (2004) Distortion product otoacoustic emission (DPOAE) input/output functions and the influence of the second DPOAE source. J Acoust Soc Am 116:2199–2212

    Article  PubMed  Google Scholar 

  • Merchant SN (2010) Schuknecht’s pathology of the ear. People’s Medical Publishing House, Shelton

    Google Scholar 

  • Merchant SN, Adams JC, Nadol JB Jr (2005) Pathophysiology of Meniere’s syndrome: are symptoms caused by endolymphatic hydrops? Otol Neurotol 26:74–81

    Article  PubMed  Google Scholar 

  • Monsell E, Balkany T, Gates G, Goldenberg R, Meyerhoff W, House J (1995) Committee on hearing and equilibrium guidelines for the diagnosis and evaluation of therapy in Meniere’s disease. Otolaryngol Head Neck Surg 111:181–185

    Google Scholar 

  • Noffsinger PD, Tillman TW (1970) Postexposure responsiveness in the auditory system. I. Immediate sensitization. J Acoust Soc Am 47:546–551

    Article  CAS  PubMed  Google Scholar 

  • Noffsinger PD, Olsen WO (1970) Postexposure responsiveness in the auditory system. II. Sensitization and desensitization. J Acoust Soc Am 47:552–564

    Article  CAS  PubMed  Google Scholar 

  • Patuzzi R (2002) Outer hair cells, EP regulation and tinnitus. In: Proceedings of the Seventh International Tinnitus Seminar. (Patuzzi R ed). The University of Western Australia, Crawley.

  • Patuzzi R (2011) Ion flow in cochlear hair cells and the regulation of hearing sensitivity. Hear Res 280:3–20

    Article  CAS  PubMed  Google Scholar 

  • Patuzzi R, Wareing N (2002) Generation of transient tinnitus in humans using low-frequency tones and its mechanism. In: Proceedings of the Seventh International Tinnitus Seminar (Patuzzi R, ed), pp 16–24. The University of Western Australia, Crawley

  • Robertson D (1982) Effects of acoustic trauma on stereocilia structure and spiral ganglion cell tuning properties in the guinea pig cochlea. Hear Res 7:55–74

    Article  CAS  PubMed  Google Scholar 

  • Robertson D (1983) Functional significance of dendritic swelling after loud sounds in the guinea pig cochlea. Hear Res 9:263–278

    Article  CAS  PubMed  Google Scholar 

  • Salt AN (2004) Acute endolymphatic hydrops generated by exposure of the ear to nontraumatic low-frequency tones. J Assoc Res Otolaryngol 5:203–214

    Article  PubMed Central  PubMed  Google Scholar 

  • Salt AN, Plontke SK (2010) Endolymphatic hydrops: pathophysiology and experimental models. Otolaryngol Clin North Am 43:971–983

    Article  PubMed Central  PubMed  Google Scholar 

  • Sewell WF (1984) The effects of furosemide on the endocochlear potential and auditory-nerve fiber tuning curves in cats. Hear Res 14:305–314

    Article  CAS  PubMed  Google Scholar 

  • Shera CA, Guinan JJ (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAES. JAcoustSocAm 105:782–798

    CAS  Google Scholar 

  • Siegel JH, Hirohata ET (1994) Sound calibration and distortion-product otoacoustic emissions at high-frequencies. Hear Res 80:146–152

    Article  CAS  PubMed  Google Scholar 

  • Sirjani DB, Salt AN, Gill RM, Hale SA (2004) The influence of transducer operating point on distortion generation in the cochlea. J Acoust Soc Am 115:1219–1229

    Article  PubMed  Google Scholar 

  • Talmadge CL, Long GR, Tubis A, Dhar S (1999) Experimental confirmation of the two-source interference model for the fine structure of distortion product otoacoustic emissions. JAcoustSocAm 105:275–292

    CAS  Google Scholar 

  • Vernon J, Johnson R, Schleuning A (1980) The characteristics and natural history of tinnitus in Meniere’s disease. Otolaryngol Clin North Am 13:611–619

    CAS  PubMed  Google Scholar 

  • Wang Y, Hirose K, Liberman MC (2002) Dynamics of noise-induced cellular injury and repair in the mouse cochlea. J Assoc Res Otolaryngol 3:248–268

    Article  PubMed Central  PubMed  Google Scholar 

  • Wittekindt A, Gaese BH, Kossl M (2009) Influence of contralateral acoustic stimulation on the quadratic distortion product f2-f1 in humans. Hear Res 247:27–33

    Article  PubMed  Google Scholar 

  • Young JA, Elliott SJ, Lineton B (2012) Investigating the wave-fixed and place-fixed origins of the 2f(1)-f(2) distortion product otoacoustic emission within a micromechanical cochlear model. J Acoust Soc Am 131:4699–4709

    Article  PubMed  Google Scholar 

  • Zwicker E, Hesse A (1984) Temporary threshold shifts after onset and offset of moderately loud low-frequency maskers. J Acoust Soc Am 75:545–549

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by a grant from the German Ministry of Science and Education to the German Center for Vertigo and Balance Disorders (IFB), project TR-F9 to R.G., E.K. and M.D., a Medical Research Council grant G0801693 to A.N.L. and T.D.W and a grant from the BCCN Munich, TP7, B3 Wiegrebe to L.W.

We would like to thank the four anonymous reviewers for their constructive comments on earlier versions of the manuscript.

We are grateful to Sybille Krall, who inspired the experiments in the present study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Drexl.

Additional information

E. Krause and R. Gürkov contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drexl, M., Überfuhr, M., Weddell, T.D. et al. Multiple Indices of the ‘Bounce’ Phenomenon Obtained from the Same Human Ears. JARO 15, 57–72 (2014). https://doi.org/10.1007/s10162-013-0424-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-013-0424-x

Keywords

Navigation