Auditory Forebrain Neurons Track Temporal Features of Time-Warped Natural Stimuli

  • Ross K. Maddox
  • Kamal SenEmail author
  • Cyrus P. Billimoria
Research Article


A fundamental challenge for sensory systems is to recognize natural stimuli despite stimulus variations. A compelling example occurs in speech, where the auditory system can recognize words spoken at a wide range of speeds. To date, there have been more computational models for time-warp invariance than experimental studies that investigate responses to time-warped stimuli at the neural level. Here, we address this problem in the model system of zebra finches anesthetized with urethane. In behavioral experiments, we found high discrimination accuracy well beyond the observed natural range of song variations. We artificially sped up or slowed down songs (preserving pitch) and recorded auditory responses from neurons in field L, the avian primary auditory cortex homolog. We found that field L neurons responded robustly to time-warped songs, tracking the temporal features of the stimuli over a broad range of warp factors. Time-warp invariance was not observed per se, but there was sufficient information in the neural responses to reliably classify which of two songs was presented. Furthermore, the average spike rate was close to constant over the range of time warps, contrary to recent modeling predictions. We discuss how this response pattern is surprising given current computational models of time-warp invariance and how such a response could be decoded downstream to achieve time-warp-invariant recognition of sounds.


sensory systems audition perceptual invariance time-warping zebra finch neurophysiology 



The authors wish to thank Elizabeth M McClaine and Gilberto David Graña for help with behavioral testing and histology.


  1. Ahissar E, Nagarajan S, Ahissar M et al (2001) Speech comprehension is correlated with temporal response patterns recorded from auditory cortex. Proc Natl Acad Sci U S A 98:13367–13372. doi: 10.1073/pnas.201400998 PubMedCentralPubMedCrossRefGoogle Scholar
  2. Bar-Yosef O, Rotman Y, Nelken I (2002) Responses of neurons in cat primary auditory cortex to bird chirps: effects of temporal and spectral context. J Neurosci 22:8619–8632PubMedGoogle Scholar
  3. Barak O, Tsodyks M (2006) Recognition by variance: learning rules for spatiotemporal patterns. Neural Comput 18:2343–2358. doi: 10.1162/neco.2006.18.10.2343 PubMedCrossRefGoogle Scholar
  4. Billimoria CP, Kraus BJ, Narayan R et al (2008) Invariance and sensitivity to intensity in neural discrimination of natural sounds. J Neurosci 28:6304–6308. doi: 10.1523/JNEUROSCI.0961-08.2008 PubMedCentralPubMedCrossRefGoogle Scholar
  5. Carney LH, Yin TC (1988) Temporal coding of resonances by low-frequency auditory nerve fibers: single-fiber responses and a population model. J Neurophysiol 60:1653–1677PubMedGoogle Scholar
  6. Denes PB, Pinson EN (1993) The speech chain. MacmillanGoogle Scholar
  7. Doupe AJ, Kuhl PK (1999) Birdsong and human speech: common themes and mechanisms. Annu Rev Neurosci 22:567–631. doi: 10.1146/annurev.neuro.22.1.567 PubMedCrossRefGoogle Scholar
  8. Ellis DPW (2002) A phase vocoder in MATLAB.\textasciitildedpwe/resources/matlab/pvoc/Google Scholar
  9. Feng AS, Hall JC, Siddique S (1991) Coding of temporal parameters of complex sounds by frog auditory nerve fibers. J Neurophysiol 65:424–445PubMedGoogle Scholar
  10. Flanagan JL, Golden RM (1966) Phase Vocoder. Bell System Tech J 45:1493–1509CrossRefGoogle Scholar
  11. Fortune ES, Margoliash D (1992) Cytoarchitectonic organization and morphology of cells of the field L complex in male zebra finches (Taenopygia guttata). J Comp Neurol 325:388–404PubMedCrossRefGoogle Scholar
  12. Gentner TQ, Margoliash D (2003) Neuronal populations and single cells representing learned auditory objects. Nature 424:669–674PubMedCentralPubMedCrossRefGoogle Scholar
  13. Gollisch T (2008) Time-warp invariant pattern detection with bursting neurons. New J Phys 10:015012CrossRefGoogle Scholar
  14. Gutig R, Sompolinsky H (2009) Time-warp-invariant neuronal processing. PLoS Biol 7:e1000141. doi: 10.1371/journal.pbio.1000141 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Hopfield JJ, Brody CD (2000) What is a moment? “Cortical” sensory integration over a brief interval. Proc Natl Acad Sci U S A 97:13919–13924PubMedCentralPubMedCrossRefGoogle Scholar
  16. Hopfield JJ, Brody CD (2001) What is a moment? Transient synchrony as a collective mechanism for spatiotemporal integration. Proc Natl Acad Sci U S A 98:1282–1287PubMedCentralPubMedCrossRefGoogle Scholar
  17. Larson E, Billimoria CP, Sen K (2009) A biologically plausible computational model for auditory object recognition. J Neurophysiol 101:323–331. doi: 10.1152/jn.90664.2008 PubMedCrossRefGoogle Scholar
  18. Larson E, Perrone BP, Sen K, Billimoria CP (2010) A robust and biologically plausible spike pattern recognition network. J Neurosci 30:15566–15572. doi: 10.1523/JNEUROSCI.3672-10.2010 PubMedCentralPubMedCrossRefGoogle Scholar
  19. Machens CK, Schutze H, Franz A et al (2003) Single auditory neurons rapidly discriminate conspecific communication signals. Nat Neurosci 6:341–342PubMedCrossRefGoogle Scholar
  20. Moore BC (2006) An introduction to the psychology of hearing. Elsevier, Oxford, UKGoogle Scholar
  21. Nagel KI, McLendon HM, Doupe AJ (2010) Differential influence of frequency, timing, and intensity cues in a complex acoustic categorization task. J Neurophysiol 104:1426–1437. doi: 10.1152/jn.00028.2010 PubMedCrossRefGoogle Scholar
  22. Narayan R, Best V, Ozmeral E et al (2007) Cortical interference effects in the cocktail party problem. Nat Neurosci 10:1601–1607. doi: 10.1038/nn2009 PubMedCrossRefGoogle Scholar
  23. Nelken I (2004) Processing of complex stimuli and natural scenes in the auditory cortex. Curr Opin Neurobiol 14:474–480PubMedCrossRefGoogle Scholar
  24. Pienkowski M, Eggermont JJ (2011) Sound frequency representation in primary auditory cortex is level tolerant for moderately loud, complex sounds. J Neurophysiol 106:1016–1027. doi: 10.1152/jn.00291.2011 PubMedCrossRefGoogle Scholar
  25. Rauschecker JP (1998) Cortical control of the thalamus: top-down processing and plasticity. Nat Neurosci 1:179–180. doi: 10.1038/625 PubMedCrossRefGoogle Scholar
  26. Shigenaga S (1965) The constancy of loudness and of acoustic distance. Bull Faculty Lit Kyushu Univ 9:289–333Google Scholar
  27. Tank DW, Hopfield JJ (1987) Neural computation by concentrating information in time. Proc Natl Acad Sci U S A 84:1896–1900PubMedCentralPubMedCrossRefGoogle Scholar
  28. Versfeld NJ, Dreschler WA (2002) The relationship between the intelligibility of time-compressed speech and speech in noise in young and elderly listeners. J Acoust Soc Am 111:401–408. doi: 10.1121/1.1426376 PubMedCrossRefGoogle Scholar
  29. Wang L, Narayan R, Grana G et al (2007) Cortical discrimination of complex natural stimuli: can single neurons match behavior? J Neurosci 27:582–589. doi: 10.1523/JNEUROSCI.3699-06.2007 PubMedCrossRefGoogle Scholar
  30. Wang X, Merzenich MM, Beitel R, Schreiner CE (1995) Representation of a species-specific vocalization in the primary auditory cortex of the common marmoset: temporal and spectral characteristics. J Neurophysiol 74:2685–2706PubMedGoogle Scholar
  31. Wang Y, Brzozowska-Prechtl A, Karten HJ (2010) Laminar and columnar auditory cortex in avian brain. Proc Natl Acad Sci U S A 107:12676–12681. doi: 10.1073/pnas.1006645107 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Yost WA (2004) Determining an Auditory Scene. In: Gazzaniga MS (ed) The cognitive neurosciences. MIT Press, Cambridge, MA, pp 385–410Google Scholar

Copyright information

© Association for Research in Otolaryngology 2013

Authors and Affiliations

  • Ross K. Maddox
    • 1
    • 2
    • 3
  • Kamal Sen
    • 2
    • 3
    Email author
  • Cyrus P. Billimoria
    • 2
    • 3
  1. 1.Institute for Learning and Brain SciencesUniversity of WashingtonSeattleUSA
  2. 2.Hearing Research CenterBoston UniversityBostonUSA
  3. 3.Center for Biodynamics, Department of Biomedical EngineeringBoston UniversityBostonUSA

Personalised recommendations